References
- Yamaguchi-Shinozaki, K. and Shinozaki, K. (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6, 251-264 https://doi.org/10.1105/tpc.6.2.251
- Gamboa, M. C., Rasmussen-Poblete, S., Valenzuela, P. D. and Krauskopf, E. (2007) Isolation and characterization of a cDNA encoding a CBF transcription factor from E. globulus. Plant Physiol. Biochem. 45, 1-5 https://doi.org/10.1016/j.plaphy.2006.12.006
- Kim, Y. H., Yang, K. S., Ryu, S. H., Kim, K. Y., Song, W. K., Kwon, S. Y., Lee, H. S., Bang, J. W. and Kwak, S. S. (2008) Molecular characterization of a cDNA encoding DRE-binding transcription factor from dehydration-treated fibrous roots of sweetpotato. Plant. Physiol. Biochem. 46, 196-204 https://doi.org/10.1016/j.plaphy.2007.09.012
- Tang, M., Lu, S., Jing, Y., Zhou, X., Sun, J. and Shen, S. (2005) Isolation and identification of a cold-inducible gene encoding a putative DRE-binding transcription factor from Festuca arundinacea. Plant. Physiol. Biochem. 43, 233-239 https://doi.org/10.1016/j.plaphy.2005.01.015
- Jaglo-Ottosen, K. R., Gilmour, S. J., Zarka, D. G., Schabenberger, O. and Thomashow, M. F. (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280, 104-106 https://doi.org/10.1126/science.280.5360.104
- Gilmour, S. J., Sebolt, A. M., Salazar, M. P., Everard, J. D. and Thomashow, M. F. (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant. Physiol. 124, 1854-1865 https://doi.org/10.1104/pp.124.4.1854
- Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17, 287-291 https://doi.org/10.1038/7036
- Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi- Shinozaki, K. and Shinozaki, K. (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant. Cell 10, 1391-1406 https://doi.org/10.1105/tpc.10.8.1391
- Novillo, F., Alonso, J. M., Ecker, J. R. and Salinas, J. (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 101, 3985-3990 https://doi.org/10.1073/pnas.0303029101
- Haake, V., Cook, D., Riechmann, J. L., Pineda, O., Thomashow, M. F. and Zhang, J. Z. (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant. Physiol. 130, 639-648 https://doi.org/10.1104/pp.006478
- Dubouzet, J. G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E. G., Miura, S., Seki, M., Shinozaki, K. and Yamaguchi- Shinozaki, K. (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant. J. 33, 751-763 https://doi.org/10.1046/j.1365-313X.2003.01661.x
- Ito, Y., Katsura, K., Maruyama, K., Taji, T., Kobayashi, M., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant. Cell Physiol. 47, 141-153 https://doi.org/10.1093/pcp/pci230
- Baker, S. S., Wilhelm, K. S. and Thomashow, M. F. (1994) The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant. Mol. Biol. 24, 701-713 https://doi.org/10.1007/BF00029852
- Jiang, C., Iu, B. and Singh, J. (1996) Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant. Mol. Biol. 30, 679-684 https://doi.org/10.1007/BF00049344
- Gilmour, S. J., Zarka, D. G., Stockinger, E. J., Salazar, M. P., Houghton, J. M. and Thomashow, M. F. (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant. J. 16, 433-442 https://doi.org/10.1046/j.1365-313x.1998.00310.x
- Kobayashi, F., Takumi, S. and Nakamura, C. (2008) Increased freezing tolerance in an ABA-hypersensitive mutant of common wheat. J. Plant. Physiol. 165, 224-232 https://doi.org/10.1016/j.jplph.2006.11.004
- Kurkela, S. and Borg-Franck, M. (1992) Structure and expression of kin2, one of two cold- and ABA-induced genes of Arabidopsis thaliana. Plant. Mol. Biol. 19, 689-692 https://doi.org/10.1007/BF00026794
- Stockinger, E. J., Gilmour, S. J. and Thomashow, M. F. (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/ DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. U.S.A. 94, 1035-1040 https://doi.org/10.1073/pnas.94.3.1035
- Maruyama, K., Sakuma, Y., Kasuga, M., Ito, Y., Seki, M., Goda, H., Shimada, Y., Yoshida, S., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/ CBF3 transcriptional factor using two microarray systems. Plant. J. 38, 982-993 https://doi.org/10.1111/j.1365-313X.2004.02100.x
- Shinozaki, K., Yamaguchi-Shinozaki, K. and Seki, M. (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant. Biol. 6, 410-417 https://doi.org/10.1016/S1369-5266(03)00092-X
- Zhu, J. K. (2002) Salt and drought stress signal transduction in plants. Annu. Rev. Plant. Biol. 53, 247-273 https://doi.org/10.1146/annurev.arplant.53.091401.143329
- Medina, J., Bargues, M., Terol, J., Perez-Alonso, M. and Salinas, J. (1999) The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression Is regulated by low temperature but not by abscisic acid or dehydration. Plant. Physiol. 119, 463-470 https://doi.org/10.1104/pp.119.2.463
- Nakashima, K., Shinwari, Z. K., Sakuma, Y., Seki, M., Miura, S., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant. Mol. Biol. 42, 657-665 https://doi.org/10.1023/A:1006321900483
- Shinwari, Z. K., Nakashima, K., Miura, S., Kasuga, M., Seki, M., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1998) An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem. Biophys. Res. Commun. 250, 161-170 https://doi.org/10.1006/bbrc.1998.9267
- Chen, M., Wang, Q. Y., Cheng, X. G., Xu, Z. S., Li, L. C., Ye, X. G., Xia, L. Q. and Ma, Y. Z. (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem. Biophys. Res. Commun. 353, 299-305 https://doi.org/10.1016/j.bbrc.2006.12.027
- Chan, S. W., Henderson, I. R. and Jacobsen, S. E. (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat. Rev. Genet 6, 351-360 https://doi.org/10.1038/nrg1601
- Bender, J. and Fink, G. R. (1995) Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis. Cell 83, 725-734 https://doi.org/10.1016/0092-8674(95)90185-X
- Zhang, X., Henriques, R. and Lin, S. S. (2006) Agrobacteriummediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 1, 641-646 https://doi.org/10.1038/nprot.2006.97
- Peng, R. H., Huang, X. M., Li, X., Sun, A. J., Yao, Q. H. and Peng, Y. L. (2001) Construction of a plant binary expression vector containing intro-kanamycin gene and transformation in nicotiana tabacum. Acta. Phytophysiologica. Sinica. 27, 55-60
- Mitsuhara, I., Ugaki, M., Hirochika, H., Ohshima, M., Murakami, T., Gotoh, Y., Katayose, Y., Nakamura, S., Honkura, R., Nishimiya, S., Ueno, K., Mochizuki, A., Tanimoto, H., Tsugawa, H., Otsuki, Y. and Ohashi, Y. (1996) Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant. Cell. Physiol. 37, 49-59 https://doi.org/10.1093/oxfordjournals.pcp.a028913
- Gallie, D. R., Sleat, D. E., Watts, J., Turner, P. C. and Wilson, T. M. A. (1987) A comparison of eukaryotic viral 50-leader sequences as enhancers of mRNA expression in vivo. Nucl. Acids. Res. 15, 8693-8711 https://doi.org/10.1093/nar/15.21.8693
- Xiong, L., Lee, B., Ishitani, M., Lee, H., Zhang, C. and Zhu, J. K. (2001) FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev. 15, 1971-1984 https://doi.org/10.1101/gad.891901
- Zhu, B., Xiong, A. S., Peng, R. H., Xu, J., Zhou, J., Xu, J. T., Jin, X. F., Zhang, Y., Hou, X. L. and Yao, Q. H. (2008) Heat stress protection in Aspen sp1 transgenic Arabidopsis thaliana. BMB Rep. 41, 382-387
- Qin, Q. L., Liu, J. G., Zhang, Z., Peng, R. H., Xiong, A. S., Yao, Q. H. and Chen, J. M. (2007) Isolation, optimization, and functional analysis of the cDNA encoding transcription factor OsDREB1B in Oryza Sativa L. Mol. Breeding 19, 329-340 https://doi.org/10.1007/s11032-006-9065-7
- Gietz, R. D. and Woods, R. A. (2006) Yeast transformation by the LiAc/SS Carrier DNA/PEG method. Methods Mol. Biol. 313, 107-120
Cited by
- Avoiding damage and achieving cold tolerance in rice plants vol.2, pp.2, 2013, https://doi.org/10.1002/fes3.25
- Fine mapping of the qLOP2 and qPSR2-1 loci associated with chilling stress tolerance of wild rice seedlings vol.128, pp.1, 2015, https://doi.org/10.1007/s00122-014-2420-x
- Transcriptome-based gene expression profiling identifies differentially expressed genes critical for salt stress response in radish (Raphanus sativus L.) vol.35, pp.2, 2016, https://doi.org/10.1007/s00299-015-1887-5
- Utilization of transposable element mPing as a novel genetic tool for modification of the stress response in rice vol.32, pp.3, 2013, https://doi.org/10.1007/s11032-013-9885-1
- Peanut ethylene-responsive element binding factor (AhERF6) improves cold and salt tolerance in Arabidopsis vol.38, pp.7, 2016, https://doi.org/10.1007/s11738-016-2201-z
- Genome-Wide Identification and Analysis of Genes, Conserved between japonica and indica Rice Cultivars, that Respond to Low-Temperature Stress at the Vegetative Growth Stage vol.8, 2017, https://doi.org/10.3389/fpls.2017.01120
- CBF-dependent signaling pathway: A key responder to low temperature stress in plants vol.31, pp.2, 2011, https://doi.org/10.3109/07388551.2010.505910
- Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.) vol.11, pp.1, 2016, https://doi.org/10.1371/journal.pone.0146242
- Improvement of drought and salt tolerance in Arabidopsis and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica vol.506, pp.1, 2012, https://doi.org/10.1016/j.gene.2012.06.089
- Transcription Regulation of Abiotic Stress Responses in Rice: A Combined Action of Transcription Factors and Epigenetic Mechanisms vol.15, pp.12, 2011, https://doi.org/10.1089/omi.2011.0095
- Oil palm drought inducible DREB1 induced expression of DRE/CRT- and non-DRE/CRT-containing genes in lowland transgenic tomato under cold and PEG treatments vol.112, 2017, https://doi.org/10.1016/j.plaphy.2016.12.025
- OsRAN2, essential for mitosis, enhances cold tolerance in rice by promoting export of intranuclear tubulin and maintaining cell division under cold stress vol.34, pp.1, 2011, https://doi.org/10.1111/j.1365-3040.2010.02225.x
- Cloning of Six ERF Family Transcription Factor Genes from Peanut and Analysis of their Expression during Abiotic Stress vol.30, pp.6, 2012, https://doi.org/10.1007/s11105-012-0456-0
- Discovery, phylogeny and expression patterns of AP2-like genes in maize vol.62, pp.1, 2010, https://doi.org/10.1007/s10725-010-9484-7
- Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of peanut (Arachis hypogaea L.) vol.38, pp.6, 2016, https://doi.org/10.1007/s13258-016-0395-5
- Phytochrome B Negatively Affects Cold Tolerance by Regulating OsDREB1 Gene Expression through Phytochrome Interacting Factor-Like Protein OsPIL16 in Rice vol.7, 2016, https://doi.org/10.3389/fpls.2016.01963
- Genome-wide identification and characterization of the apple (Malus domestica) HECT ubiquitin-protein ligase family and expression analysis of their responsiveness to abiotic stresses vol.291, pp.2, 2016, https://doi.org/10.1007/s00438-015-1129-0
- Discovery and expression profile analysis of AP2/ERF family genes from Triticum aestivum vol.38, pp.2, 2011, https://doi.org/10.1007/s11033-010-0162-7
- Arg156 in the AP2-Domain Exhibits the Highest Binding Activity among the 20 Individuals to the GCC Box in BnaERF-B3-hy15, a Mutant ERF Transcription Factor from Brassica napus vol.7, 2016, https://doi.org/10.3389/fpls.2016.01603
- Comparative transcriptomics analysis reveals difference of key gene expression between banana and plantain in response to cold stress vol.16, pp.1, 2015, https://doi.org/10.1186/s12864-015-1551-z
- Genome-wide response to selection and genetic basis of cold tolerance in rice (Oryza sativa L.) vol.15, pp.1, 2014, https://doi.org/10.1186/1471-2156-15-55
- Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses vol.15, pp.1, 2014, https://doi.org/10.1186/1471-2164-15-1009
- Genome-Wide Identification and Expression Analysis of the Tubby-Like Protein Family in the Malus domestica Genome vol.7, 2016, https://doi.org/10.3389/fpls.2016.01693
- ZmWRKY33, a WRKY maize transcription factor conferring enhanced salt stress tolerances in Arabidopsis vol.70, pp.3, 2013, https://doi.org/10.1007/s10725-013-9792-9
- OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors vol.82, pp.4-5, 2013, https://doi.org/10.1007/s11103-013-0073-9
- Regulation of low temperature stress in plants by microRNAs 2018, https://doi.org/10.1111/pce.12956
- ) Roots by Illumina- and Single-Molecule Real-Time-Based RNA Sequencing pp.1557-7430, 2018, https://doi.org/10.1089/dna.2018.4352
- Genome-Wide Analysis of CDPK Family in Foxtail Millet and Determination of SiCDPK24 Functions in Drought Stress vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.00651