Effect of Nitrogen on Eleutheroside production and Adventitious Root Growth in Eleutherococcus koreanum Nakai Bioreactor Cultures

생물반응기를 이용한 섬오갈피나무의 부정근 배양시 질소농도 및 NH4+와 NO3- 비율이 부정근의 생육과 eleutherosides 함량에 미치는 영향

  • Ahn, Jin-Kwon (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Lee, Wi-Young (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Park, Eung-Jun (Department of Forest Genetic Resources, Korea Forest Research Institute)
  • 안진권 (국립산림과학원 산림유전자원부) ;
  • 이위영 (국립산림과학원 산림유전자원부) ;
  • 박응준 (국립산림과학원 산림유전자원부)
  • Received : 2009.03.04
  • Accepted : 2009.04.27
  • Published : 2009.09.30

Abstract

This study was carried out to investigate the effect of ${NO_3}^-$ and ${NH_4}^+$ on the adventitious root growth and eleuthroside synthesis of Eleutherococcus koreanum in 5 L-bioreactor culture. The change in the medium components was also measured during culture. The fresh weignt of adventitious root reached to the highest level of 30.8 g FW/L in the presence of both 50 mM ${NO_3}^-$ and 10 mM $NH_4^+$, representing 3.6-fold increase compared to the 60 mM ${NH_4}^+$ alone. However, as the increase of the portion of ${NH_4}^+$, the root growth was decreased. However, the maximum eleutheroside B, E and E1 contents were $57.3{\mu}g/g$ DW, $188.4{\mu}g/g$ DW and $47.3{\mu}g/g$ DW, with 30 mM, 60 mM and 15 mM total nitrogen source, respectively. Fresh weight of adventitious root increased up to 6.8-fold of inoculum size within 9 weeks. The amounts of ${NH_4}^+$, $K^+$, ${NO_3}^-$ and ${PO_4}^-$ were decreased during culture periods. Based on these results, we suggest that various further studies are required to increase the biomass and the useful secondary metabilites.

생물반응기를 이용하여 섬오갈피 부정근 증식시 부정근의 생장과 유용 이차대사산물인 eleutheroside 류 생산에 미치는 ${NO_3}^-$${NH_4}^+$의 영향 및 배양기간에 따른 배지성분의 변화량을 분석하였다. 부정근 증식은 질소농도가 50 mM ${NO_3}^-$와 10 mM ${NH_4}^+$ 농도비율로 첨가된 처리구에서 최대(30.8 g FW/L)에 이르러 60 mM ${NH_4}^+$ 첨가에 비해서는 3.6배 증식되었다. 또한 ${NH_4}^+$의 첨가농도비율이 높아질수록 부정근의 증식은 감소하였다. 그러나 eleutheroside B는 총 질소량이 30 mM 처리에서 $57.3{\mu}g/g$ DW, E는 60 mM 처리에서 $188.4{\mu}g/g$ DW의 함량으로 생산량이 가장 많았다. 반면에 eleutheroside $E_1$은 총 질소량이 15 mM 처리에서 $47.3{\mu}g/g$ DW로 생산량이 가장 많았다. 부정근 최대생장은 초기 접종량 대비 배양 9주만에 6.8배가 증식되었고, 배양기간별 배지 성분의 변화에서 ${NH_4}^+$, $K^+$, ${NO_3}^-$${PO_4}^-$는 배양기간이 경과할수록 함유량이 감소하였다. 이러한 결과로 보아 부정근의 생장과 유용이차대사산물의 함량을 높이기 위하여 다양한 처리의 연구가 수행되어야 할 것으로 생각된다.

Keywords

References

  1. 吳晋. 神農本草經. 1971. 翰林社. 40p
  2. 李時珍. 本草綱目. 1974. 高文社. 1204p
  3. 東醫寶鑑. 1959. 東方書店. 740p
  4. 안진권, 이위영, 오성진, 박유헌, 허성두, 최명석. 2000. 가시오갈피나무의 eleutheroside E 및 chlorogenic acid 성분함량. 한국임학회지 89(2): 216-222
  5. 안진권, 이위영, 박영기. 2007. 가시오갈피의 부정근 배 양시 부정근의 생육과 eleutheroside류의 함량에 미치는 $NO_3^−$$NH_4^+$비율 및 농도의 영향. 한국임학회지 96(1): 48-53
  6. Ahn, J.K., Lee, W.Y. and Park, S.Y. 2003. Effect nitrogen source on the cell growth and production of secondary metabolites in bioreactor cultures of Eleutherococcus senticosus. Korean Journal of Plant Biotechnology 30(3): 301-305
  7. Akalezi, C.O., Liu., S., Li, Q.S., Yu, J.T. and Zhong, J.J. 1999. Combined effects of initial sucrose concentration and inoculum size on cell growth and ginseng saponin production by suspension cultures of Panax ginseng. Process Biochemistry 34: 639-642 https://doi.org/10.1016/S0032-9592(98)00132-0
  8. Bourgaud, F., Gravot, A., Milesi, S. and Gontier, E. 2001. Production of plant secondary metabolites: a historical perspective. Plant Science 161: 839-851 https://doi.org/10.1016/S0168-9452(01)00490-3
  9. Choi, Y.E., Yang, D.C. and Yoon, E.S. 1999. Rapid propagation of Eleutherococcus senticosus via direct somatic embryogenesis from explants of seedlings. Plant Cell Tissue and Organ Culture 58: 93-97 https://doi.org/10.1023/A:1006318928684
  10. Choi, Y.E., Kim, J.W. and Soh, W.Y. 1997. Somatic embryogenesis and plant regeneration from suspension cultures of Acanthopanax koreanum Nakai. Plant Cell Reports 17: 84-88 https://doi.org/10.1007/s002990050357
  11. Choi, Y.H. and Kim, J.W. 2002. Quantitative analysis of eleutheroside B and E using HPLC-ESI/MS. Korean Journal of Pharmacognosy 33: 88-91
  12. Fujita, Y., Hara, Y., Ogino, T. and Suga, C. 1981. Production of shikonin dervatives by cell suspension cultures of Lithospermum erythrorhizon. 1. Effect of nitrogen sources on the production of shikonin dervatives. Plant Cell Reports 1: 59-60 https://doi.org/10.1007/BF00269272
  13. Gorret, N., Rosli, S.K., Oppenheim, S.F., Willis, L.B., Lessard, P.A., Rha, C.K. and Sinskey, A.J. 2004. Bioreactor culture of oil palm (Elaeis guineensis) and effects of nitrogen source, inoculum size, and conditioned medium on biomass production. Journal of Biotechnology 108: 253- 263 https://doi.org/10.1016/j.jbiotec.2003.12.009
  14. Kang, H.S., Kim, Y.H., Lee, C.S., Choi, I. and Pyun, K.H. 1996. Suppression of interleukin-1 and tumor necrosis factor-a production by acanthoic acid, (−) pimara- 9(11), 15-dien-19-oic acid, and its antifibrotic effects in vivo. Cellular Immunology 170: 212-221 https://doi.org/10.1006/cimm.1996.0154
  15. Kang, S.M., Jung, H.Y., Kang, Y.M., Yun, D.J., Bahk, J.D., Yang, J.K. and Choi, M.S. 2004. Effects methyl jasmonate and salicylic acid on the production of tropane alkaloids and the expression of PMT and H6H in adventitious root cultures of Scopolia parviflora. Plant science 166: 745-751 https://doi.org/10.1016/j.plantsci.2003.11.022
  16. Lazaridou, A., Roukas, T., Biliaderis, C.G. and Vaikousi, H. 2002. Characterization of pullulan produced from beet molasses by Aureobasidium pullulans in a stirred tank reactor under varying agitation. Enzyme and Microbial Technology 31: 122-132 https://doi.org/10.1016/S0141-0229(02)00082-0
  17. Lee, Y.S., Lee, E.B. and Kim, Y.H. 2001. Some pharmacological activities of acanthoic acid isolated from Acanthopanax koreanum root bark. The Journal of Applied Pharmacology 9: 176-182
  18. Liu, S. and Zhong, J.J. 1997. Simultaneous production of ginseng saponin and polysaccharide by suspension cultures of Panax ginseng Nitrogen effects. Enzyme and Microbial Techology 21: 518-524 https://doi.org/10.1016/S0141-0229(97)00023-9
  19. Liu, S. and Zhong, J.J. 1998. Phosphate effect on production of ginseng saponin and polysaccharide by cell suspension cultures of Panax ginseng and Panax quinquefolium. Process Biochemistry 33: 69-74 https://doi.org/10.1016/S0032-9592(97)00064-2
  20. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15: 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  21. Paek, K.Y and Chakravarthy, D. 2003. Micropropagation of woody plants using bioreactor, in: Jain, S. M and K. Ishii (Eds). Micropropagation of woody trees and fruits. Kluwer Academic Publishers, Dordresht, pp 735-755
  22. Panda, A.K., Mishra, S. and Bisaria, V.S. 1992. Alkaloid production by plant cell suspension cultures of Holarrhena antidysenterica : 1. Effect of major nutrients. Biotechnology Bioeng 39: 1043-1051 https://doi.org/10.1002/bit.260391008
  23. Perry, L.M. 1980. Medicinal Plants of Far East and Southeast Asia. The MIT Press, Cambridge. pp.41
  24. Prakash, G and Srivastava, A.K. 2007. Azadirachtin production in stirred tank reactors by Azadirachta indica suspension culture. Process Biochemistry 42: 93-97 https://doi.org/10.1016/j.procbio.2006.06.020
  25. Sakuta, M., Takagi, T. and Komamine, A. 1987. Effects of nitrogen source on betacyanin accumulation and growth in suspension cultures of Phytolacca americana. Physiology Plant 71: 459-463 https://doi.org/10.1111/j.1399-3054.1987.tb02884.x
  26. Shin, K.H and Lee, S.H. 2002. The chemistry of products from Acanthopanax species and their pharmacological activities. Natural Product Sciences 8(4): 111-126
  27. Slacanin, I., Marston, A. and Hostettmann, K. 1991. The isolation of Eleutherococcus senticosus constituents by centrifugal partition chromatography and their quantitative determination by high performance liquid chromatography. Phytochemistry Analysis 2: 137-142 https://doi.org/10.1002/pca.2800020310
  28. Son, S.H., Choi, S.M., Lee, Y.H., Choi, K.B., Yun, S.R., Kim, J.K., Park, H.J., Kwon, O.W., Noh, E.W., Seon, J.H. and Paek, K.Y. 2000. Large-scale growth and taxane production in cell cultures of Taxus cuspidata (Japanese yew) using a novel bioreactor. Plant Cell Reports 19: 628-633 https://doi.org/10.1007/s002990050784
  29. Suresh, B., Thimmaraju, R., Bhagyalakshmi, N. and Ravishankar, G.A. 2004. Polyamine and methyl jasmonateinfluenced enhancement of betalaine production in hairy root cultures of Beta vulgaris grown in a bubble column reactor and studies on efflux of pigments. Process Biochemistry 39: 2091-2096 https://doi.org/10.1016/j.procbio.2003.10.009
  30. Tang, W. 1992. Chinese drugs of plant origin, Springer Verlag, Heidelberg, pp 1-12
  31. Yook, C.S., Kim, J.H., Hahn, D.R., Nohara, T. and Chang, S.Y. 1998. A lupane-triterpene glycoside from leaves of two Acanthopanax. Photochemistry 49: 839-843 https://doi.org/10.1016/S0031-9422(97)00846-7
  32. Yook, C.S., Risley, E.A. and Seo, Y.K. 1976. A new form of Acanthopanax species(1). Korean Journal of Phamacognosy 7: 179-190
  33. Yook, C.S. 1981. Medicinal Plants of Korea. Jinmyeong Publishers Company, Seoul
  34. Yu, K.W., Gao, W., Hahn, E.J. and Paek, K.Y. 2002. Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer. Biochemical Engineering Journal 11: 211-215 https://doi.org/10.1016/S1369-703X(02)00029-3
  35. Zhong, J.J., Chen, F. and Hu, W.W. 1999. High density cultivation of Panax notoginseng cells in stirred bioreactors for the production of ginseng biomass and ginseng saponin. Process Biochemistry. 35: 491-496 https://doi.org/10.1016/S0032-9592(99)00095-3
  36. Zobayed, S. M.A. and Saxena, P.K. 2003. In vitro grown roots a superior explant for prolific shoot regeneration of St. John's wort (Hypericum perforatum L. cv ‘New Stem’) in a temporary immersion bioreactor. Plant Science 165: 463- 470 https://doi.org/10.1016/S0168-9452(03)00064-5