활성탄 위에서 잔류성 유기 오염물질(2,3,7,8-TCDD)의 등온 흡착식 및 확산계수 예측

Prediction of Adsorption Isotherms and Diffusivity on Activated Carbon for Persistent Organic Pollutant(2,3,7,8-TCDD)

  • 임영일 (한경대학교 화학공학과 FACS 연구실) ;
  • 손혜정 (한경대학교 화학공학과 FACS 연구실) ;
  • 이오성 (한경대학교 화학공학과 FACS 연구실) ;
  • 남경수 (광운대학교 환경공학과) ;
  • 유경선 (광운대학교 환경공학과)
  • Lim, Young-Il (Lab. FACS, RCCT, Department of Chemical Engineering, Hankyong National University) ;
  • Son, Hae-Jeong (Lab. FACS, RCCT, Department of Chemical Engineering, Hankyong National University) ;
  • Lee, Ohsung (Lab. FACS, RCCT, Department of Chemical Engineering, Hankyong National University) ;
  • Nam, Kyong-Soo (Department of Environment Engineering, Kwangwoon University) ;
  • Yoo, Kyoung-Seun (Department of Environment Engineering, Kwangwoon University)
  • 투고 : 2009.08.12
  • 심사 : 2009.09.18
  • 발행 : 2009.12.31

초록

본 연구에서는 $1,000^{\circ}C$에서 24시간 열처리된 활성탄에서 다이옥신과 유사구조를 갖는 o-DCB(ortho-dichlorobenzene)의 등온흡착식을 실험을 통하여 구하였고, 분자모사를 통하여 예측하였다. 실험으로 분석된 활성탄의 분자식 및 작용기 비율을 바탕으로 초기 활성탄 기본구조를 설계한 후, COMPASS(condensed-phase optimized molecular potentials for atomistic simulation studies) force field를 이용하여 이 구조를 최적화하였다. 최적화된 활성탄 분자구조에서 공극률, 비표면적, 및 입자밀도의 모사결과는 실험값과 비교되었고, 이들에 대한 실험과 모사결과의 오차는 각각 7.62, 3.79, 2.80%를 보여주었다. 통계 열역학적 방법인 GCMC(Grand Canonical Monte Carlo) 기법을 이용하여, 최적화된 활성탄 구조에서 온도에 따른 o-DCB의 등온흡착 상수값을 예측하였으며, 이 모사결과는 실험값과 비교될 때, 3% 이하의 오차를 보였다. o-DCB의 흡착특성을 바탕으로 확인되어진 활성탄 구조에서 다이옥신의 일종인 2,3,7,8-TCDD(tetrachlorodibenzo-p-dioxin) 등온흡착상수, 흡착열, 그리고 기공확산계수를 최종적으로 구함으로서, 실험적으로 구하기 힘든 맹독성 잔류성 유기물질의 흡착특성을 분자모사기법을 통하여 예측하였다.

In this study, adsorption isotherms of o-DCB(ortho-dichlorobenzene) on an activated carbon heated at $1000^{\circ}C$ for 24 hours were obtained by experiment and were predicted by using molecular simulation. The initial molecular structure of the activated carbon was designed on the basis of its molecular formula and functional groups ratio measured experimentally. Then, the molecular structure was optimized using the COMPASS(condensed-phase optimized molecular potentials for atomistic simulation studies) force field. The particle porosity, specific surface area, and particle density obtained from the optimized molecular structure of activated carbon were compared with those experimental data. The errors between experimental data and simulation results of the particle porosity, specific surface area, and particle density were shown as 7.6, 3.8, and 2.8%, respectively. Adsorption isotherms constants of o-DCB are calculated by the GCMC(grand canonical Monte Carlo) method in the optimized molecular structure of activated carbon. The simulation result of the adsorption isotherms showed an error of under 3%, compared to that of experimental data. Adsorption isotherms, adsorption heat and pore diffusivity of 2,3,7,8-TCDD(tetrachlorodibenzo-p-dioxin) was finally obtained in the same molecular structure of the activated carbon as used for o-DCB. Thus, adsorption characteristics of persistent organic pollutants on activated carbon, which are not easy to experimentally evaluate, are predicted by the molecular simulation.

키워드

과제정보

연구 과제 주관 기관 : Hankyong National University

참고문헌

  1. Son, H.-J., Lim, Y.-I. and Yoo, K.-S., 'Multiscale Simulation for Adsorption Process Development: A Case Study of n-hexane Adsorption on Activated Carbon,' Korean Chem. Eng. Res., 46(6),1087(2008)
  2. Iyer, H., Tapper, S., Lester, P., Wolk, B. and Van Reis, R., "Use of the Steric Mass Action Model in Ion-exchange Chromatographic Process Development,"J. Chromatogr. A, 832(1-2), 1(1999) https://doi.org/10.1016/S0021-9673(98)01002-4
  3. Son, H. J. and Lim, Y. I., "Multiscale Simulation Starting at the Molecular Level for Adsorption Process Development," Chinese J. Chem. Eng., 16(1), 108(2008) https://doi.org/10.1016/S1004-9541(08)60047-6
  4. Brasseur, A., Gambin, A., Laudet, A., Marien, J. and Pirard, J. P., "Elaboration of New Formulations to Remove Micropollutants in Mswi Flue Gas," Chemosphere, 56(8), 745(2004) https://doi.org/10.1016/j.chemosphere.2004.04.049
  5. Mori, K., Matsui, H., Yamaguchi, N. and Nakagawa, Y., "Multicomponent Behavior of Fixed-bed Adsorption of Dioxins by Activated Carbon Fiber," Chemosphere, 61(7), 941(2005) https://doi.org/10.1016/j.chemosphere.2005.03.035
  6. Aukett, P. N., Quirke, N., Riddiford, S. and Tennison, S. R., "Methane Adsorption on Microporous Carbons-a Comparison of Experiment, Theory, and Simulation," Carbon, 30(6), 913(1992) https://doi.org/10.1016/0008-6223(92)90015-O
  7. Cao, D., Wang, W., Shen, Z. and Chen, J., "Determination of Pore Size Distribution and Adsorption of Methane and ccl4 on Activated Carbon by Molecular Simulation," Carbon, 40(13), 2359 (2002) https://doi.org/10.1016/S0008-6223(02)00149-5
  8. Gusev, V. Y., O’Brien, J. A. and Seaton, N. A., "A Self-consistent Method for Characterization of Activated Carbons Using Supercritical Adsorption and Grand Canonical Monte Carlo Simulations," Langmuir, 13(10), 2815(1997) https://doi.org/10.1021/la960421n
  9. Ustinov, E. A. and Do, D. D., "Application of Density Functional Theory to Analysis of Energetic Heterogeneity and Pore Size Distribution of Activated Carbons," Langmuir, 20(9), 3791 (2004) https://doi.org/10.1021/la035936a
  10. Suzuki, T., Kaneko, K., Setoyama, N., Maddox, M. and Gubbins, K., "Grand Canonical Monte Carlo Simulation for Nitrogen Adsorption in Graphitic Slit Micropores: Effect of Interlayer Distance," Carbon, 34(7), 909(1996) https://doi.org/10.1016/0008-6223(96)00049-8
  11. Sun, H., "COMPASS: An ab Initio Force-field Optimized for Condensed-phase Applications - Overview with Details on Alkane and Benzene Compounds," J. Phys. Chem. B, 102(38), 7338(1998) https://doi.org/10.1021/jp980939v
  12. Yang, J. Z., Chen, Y., Zhu, A. M., Liu, Q. L. and Wu, J. Y., "Analyzing Diffusion Behaviors of Methanol/water Through MFI Membranes by Molecular Simulation," J. Membrane Sci., 318(1-2), 327(2008) https://doi.org/10.1016/j.memsci.2008.02.059
  13. Yang, J. Z., Liu, Q. L. and Wang, H. T., "Analyzing Adsorption and Diffusion Behaviors of Ethanol/water Through Silicalite Membranes by Molecular Simulation," J. Membrane Sci., 291(1-2), 1(2007) https://doi.org/10.1016/j.memsci.2006.12.025
  14. Ustinov, E. A., Do, D. D. and Fenelonov, V. B., "Pore Size Distribution Analysis of Activated Carbons: Application of Density Functional Theory Using Nongraphitized Carbon Black as a Reference System," Carbon, 44(4), 653(2006) https://doi.org/10.1016/j.carbon.2005.09.023
  15. Nguyen, T. X., Bhatia, S. K. and Nicholson, D., "Prediction of High-pressure Adsorption Equilibrium of Supercritical Gases Using Density Functional Theory," Langmuir, 21(7), 3187(2005) https://doi.org/10.1021/la047545h
  16. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E., "Equation of State Calculations by Fast Computing Machines," J. Chem. Phys., 21(6), 1087(1953) https://doi.org/10.1063/1.1699114
  17. Snurr, R. Q., Bell, A. T. and Theodorou, D. N., "Prediction of Adsorption of Aromatic Hydrocarbons in Silicalite from Grand Canonical Monte Carlo Simulations with Biased Insertions," J. Phys. Chem., 97(51), 13742(1993) https://doi.org/10.1021/j100153a051
  18. Chen, J., Ouyang, L. and Ching, W. Y., "Molecular Dynamics Simulation of y-doped s37 Grain Boundary in Alumina", Acta Mater., 53(15), 4111(2005) https://doi.org/10.1016/j.actamat.2005.05.012
  19. Arya, G., Chang, H. C. and Maginn, E. J., "A Critical Comparison of Equilibrium, Non-equilibrium and Boundary-driven Molecular Dynamics Techniques for Studying Transport in Microporous Materials," J. Chem. Phys., 115(17), 8112(2001) https://doi.org/10.1063/1.1407002
  20. Maginn, E. J., Bell, A. T. and Theodorou, D. N., "Transport Diffusivity of Methane in Silicalite from Equilibrium and Nonequilibrium Simulations," J. Phys. Chem., 97(16), 4173(1993) https://doi.org/10.1021/j100118a038
  21. Cracknell, R. F., Nicholson, D. and Quirke, N., "Direct Molecular Dynamics Simulation of Flow Down a Chemical Potential Gradient in a Slit-shaped Micropore," Phys. Rev. Lett., 74(13), 2463 (1995) https://doi.org/10.1103/PhysRevLett.74.2463
  22. MacElroy, J. M. D., "Nonequilibrium Molecular Dynamics Simulation of Diffusion and Flow in Thin Microporous Membranes", J. Chem. Phys., 101(6), 5274(1994) https://doi.org/10.1063/1.467381
  23. MacElroy, J. M. D., "Computer Simulation of Diffusion Within and Through Membranes Using Nonequilibrium Molecular Dynamics," Korean J. Chem. Eng., 17(2), 129(2000) https://doi.org/10.1007/BF02707134
  24. Nicholson, D. and Bhatia, S. K., 'Fluid Transport in Nanospaces', Mol. Simulat., 35(1-2), 109(2009) https://doi.org/10.1080/08927020802301912
  25. Bhatia, S. K. and Nicholson, D., 'Modeling Mixture Transport at the Nanoscale: Departure from Existing Paradigms,' Phys. Rev. Lett., 100(23), (2008)
  26. Yoo, K. S., Shin, J. W., Jung, J. H., Song, K. S., Cho, S. J. and Kang, S. K., 'Study of Methanol Adsorption on Activated Carbon Using Moment Method,' J. Korean Soc. Environ. Eng. 25(7), 797 (2003)
  27. Son, H. J., "Adsorption Isotherms and Diffusivity Predictions on Adsorbent Using Molecular Simulation," Master thesis, Department of Chemical Engineering, Department of Chemical Engineering, Anseong, Korea(2009)
  28. Podkooecielny, P., Nieszporek, K. and Szabelski, P., "Adsorption from Aqueous Phenol Solutions on Heterogeneous Surfaces of Activated Carbons - Comparison of Experimental Data and Simulations," Colloid. Surface. A, 277(1-3), 52(2006) https://doi.org/10.1016/j.colsurfa.2005.10.078
  29. Tee, L. S., Gotoh, S. and Stewart, W. E., "Molecular Parameters for Normal Fluids: The Kihara Potential with Spherical Core," Ind. Eng. Chem. Fund., 5(3), 363(1966) https://doi.org/10.1021/i160019a012
  30. Overcash, M. R., McPeters, A. L., Dougherty, E. J. and Carbonell, R. G., "Diffusion of 2,3,7,8-tetrachlorodibenzo-p-dioxin in Soil Containing Organic Solvents," Environ. Sci. Technol., 25(8), 1479(1991) https://doi.org/10.1021/es00020a018