DOI QR코드

DOI QR Code

Quantitative and Rapid Analysis of Transglutaminase Activity Using Protein Arrays in Mammalian Cells

  • Kwon, Mi-Hye (Department of Molecular and Cellular Biochemistry and Vascular System Research Center, Kangwon National University School of Medicine) ;
  • Jung, Jae-Wan (Department of Molecular and Cellular Biochemistry and Vascular System Research Center, Kangwon National University School of Medicine) ;
  • Jung, Se-Hui (Department of Molecular and Cellular Biochemistry and Vascular System Research Center, Kangwon National University School of Medicine) ;
  • Park, Jin-Young (Department of Molecular and Cellular Biochemistry and Vascular System Research Center, Kangwon National University School of Medicine) ;
  • Kim, Young-Myeong (Department of Molecular and Cellular Biochemistry and Vascular System Research Center, Kangwon National University School of Medicine) ;
  • Ha, Kwon-Soo (Department of Molecular and Cellular Biochemistry and Vascular System Research Center, Kangwon National University School of Medicine)
  • Received : 2008.10.21
  • Accepted : 2009.01.07
  • Published : 2009.03.31

Abstract

We developed a novel on-chip activity assay using protein arrays for quantitative and rapid analysis of transglutaminase activity in mammalian cells. Transglutaminases are a family of $Ca^{2+}$-dependent enzymes involved in cell regulation as well as human diseases such as neurodegenerative disorders, inflammatory diseases and tumor progression. We fabricated the protein arrays by immobilizing N,N'-dimethylcasein (a substrate) on the amine surface of the arrays. We initiated transamidating reaction on the protein arrays and determined the transglutaminase activity by analyzing the fluorescence intensity of biotinylated casein. The on-chip transglutaminase activity assay was proved to be much more sensitive than the $[^3H]putrescine$-incorporation assay. We successfully applied the on-chip assay to a rapid and quantitative analysis of the transglutaminase activity in all-trans retinoic acid-treated NIH 3T3 and SH-SY5Y cells. In addition, the on-chip transglutaminase activity assay was sufficiently sensitive to determine the transglutaminase activity in eleven mammalian cell lines. Thus, this novel on-chip transglutaminase activity assay was confirmed to be a sensitive and high-throughput approach to investigating the roles of transglutaminase in cellular signaling, and, moreover, it is likely to have a strong potential for monitoring human diseases.

Keywords

Acknowledgement

Supported by : Ministry of Health, Welfare and Family Affairs

References

  1. Antonyak, M.A., Jansen, J.M., Miller, A.M., Ly, T.K., Endo, M., and Cerione, R.A. (2006). Two isoforms of tissue transglutaminase mediate opposing cellular fates. Proc. Natl. Acad. Sci. USA 103, 18609-18614 https://doi.org/10.1073/pnas.0604844103
  2. De Mace do, P., Marrano, C., and Keillor, J.W. (2000). A direct continuous spectrophotometric assay for transglutaminase activity. Anal. Biochem. 285, 16-20 https://doi.org/10.1006/abio.2000.4713
  3. Esposito, C., and Caputo, I. (2005). Mammalian transglutaminases. Identification of substrates as key to physiological function and physiopathological relevance. FEBS J. 272, 615 -631 https://doi.org/10.1111/j.1742-4658.2004.04476.x
  4. Gillet, S.M.F.G., Pelletier, J.N., and Keillor, J.W. (2007). A direct fluouorometric assay for tissue transglutaminase. Anal. Biochem. 347, 221-226 https://doi.org/10.1016/j.ab.2005.09.035
  5. Griffin, M., Casadio, R., and Bergamini, C.M. (2002). Transglutaminases: nature's biological glues. Biochem. J. 368, 377-396 https://doi.org/10.1042/BJ20021234
  6. Houseman, B.T., Huh, J.H., Kron, S.J., and Mrksich, M. (2002). Peptide chips for the quantitative evaluation of protein kinase activity. Nat. Biotechnol. 20, 270-274 https://doi.org/10.1038/nbt0302-270
  7. Jeon, J.-H., Choi, K.-H., Cho, S.-Y., Kim, C.-W., Shin, D.-M., Kwon, J.-C., Song, K.-Y., Park, S.-C., and Kim, I.-G. (2003). Transglutaminase 2 inhibits Rb binding of human papillomavirus E7 by incorporating polyamine. EMBO J. 22, 5273-5282 https://doi.org/10.1093/emboj/cdg495
  8. Jeon, J.-H., Kim, C.-W., Shin, D.-M., Cho, S.-Y., Jang, G.-Y., Lee, H.-J., and Kim, I.-G. (2006). Colorimetric transglutaminase assays combined with immunological signal amplification. Anal. Biochem. 348, 327-329 https://doi.org/10.1016/j.ab.2005.11.006
  9. Karpati, L., Penke, B., Katona, E., Balogh, I., Vamosi, G., and Muszbek, L. (2000). A modified, optimized kinetic photometric assay for the determination of blood coagulation factor XIII activity in plasma. Clin. Chem. 46, 1946-1955
  10. Kim, S.Y. (2006). Transglutaminase 2 in inflammation. Front. Biosci. 11, 3026-3035 https://doi.org/10.2741/2030
  11. Kim, H.-S., Jung, S.-H., Kim, S.-H., Suh, I.-B., Kim, W.-J., Jung , J.-W., Yuk, J.S., Kim, Y.-M., and Ha, K.-S. (2006). High-throughput analysis of mumps virus and the virus-specific monoclonal antibody on the arrays of a cationic polyelectrolyte with a spectral SPR biosensor. Proteomics 6, 6426-6432 https://doi.org/10.1002/pmic.200600432
  12. Kotsakis, P., and Griffin, M. (2007). Tissue transglutaminase in tumour progression: friend or foe? Amino Acids 33, 373-384 https://doi.org/10.1007/s00726-007-0516-1
  13. MacBeath, G., and Schreiber, S.L. (2000). Printing proteins as microarrays for high-throughput function determination. Science 289, 1760-1763
  14. Machida, K., Thompson, C.M., Dierck, K., Jablonowski, K., Karkkainen, S., Liu, B., Zhang, H., Nash, P.D., Newman, D.K., Nollau, P., et al. (2007). High-throughput phosphotyrosine profiling using SH2 domains. Mol. Cell 26, 899-915 https://doi.org/10.1016/j.molcel.2007.05.031
  15. Martin, K., Steinberg, T.H., Cooley, L.A., Gee, K.R., Beechem, J.M., and Patton, W.F. (2003). Quantitative analysis of protein phosphorylation status and protein kinase activity on microarrays using a novel fluorescent phosphorylation sensor dye. Proteomics 3, 1244-1255 https://doi.org/10.1002/pmic.200300445
  16. Ptacek, J., Devgan, G., Michaud, G., Zhu, H., Zhu, X., Fasolo, J., Guo, H., Jona, G., Breitkreutz, A., Sopko, R., et al. (2005). Global analysis of protein phosphorylation in yeast. Nature 438, 679-684 https://doi.org/10.1038/nature04187
  17. Reif, S., and Lerner, A. (2004). Tissue transglutaminase - the key player in celiac disease: a review. Autoimmun. Rev. 3, 40-45 https://doi.org/10.1016/S1568-9972(03)00065-X
  18. Ruan, Q., and Johnson, G.V. (2007). Transglutaminase 2 in neurodegenerative disorders. Front. Biosci. 12, 891-904 https://doi.org/10.2741/2111
  19. Sadaghiani, A.M., Verhelst, S.H., and Bogyo, M. (2007). Tagging and detection strategies for activity-based proteomics. Curr. Opin. Chem. Biol. 11, 20-28 https://doi.org/10.1016/j.cbpa.2006.11.030
  20. Sane, D.C., Kontos, J.L., and Greenberg, C.S. (2007). Roles of transglutaminases in cardiac and vascular disease. Front. Biosci. 12, 2530-2545 https://doi.org/10.2741/2253
  21. Schmidinger, H., Hermetter, A., and Birner-Gruenberger, R. (2006). Activity-based proteomics: enzymatic activity profiling in complex proteomes. Amino Acids 30, 333-350
  22. Shigaki, S., Yamaji, T., Han, X., Yamanouchi, G., Sonoda, T., Okitsu, O., Mori, T., Niidome, T., and Katayama, Y. (2007). A peptide microarray for the detection of protein kinase activity in cell lysate. Anal. Sci. 23, 271-275 https://doi.org/10.2116/analsci.23.271
  23. Trigwell, S.M., Lynch, P.T., Griffin, M., Hargreaves, A.J., and Bonner, P.L.R. (2004). An improved colorimetric assay for the measurement of transglutaminase (type II) $\varepsilon$-($\gamma$-glutamyl) lysine cross-linking activity. Anal. Biochem. 330, 164-166 https://doi.org/10.1016/j.ab.2004.03.068
  24. Tucholski, J., and Johnson, G.V.W. (2003). Tissue transglutaminase directly regulates adenylyl cyclase resulting in enhanced cAMP-response element-binding protein (CREB) activation. J. Biol. Chem. 278, 26838-26843 https://doi.org/10.1074/jbc.M303683200
  25. Verderio, E.A., Johnson, T., and Griffin, M. (2004). Tissue Transglutaminase in normal and abnormal wound healing: review article. Amino Acids 26, 387-404
  26. Walther, D.J., Peter, J.-U., Winter, S., Holtje, M., Paulmann, N., Grohmann, M., Vowinckel, J., Alamo-Bethencourt, V., Wilhelm, C.S., Ahnert-Hilger, G., et al. (2003). Serotonylation of small GTPases is a signal transduction pathway that triggers platelet alpha-granule release. Cell 115, 851-862 https://doi.org/10.1016/S0092-8674(03)01014-6
  27. Wu, Y.-W., and Tsai, Y.-H (2006). A rapid transglutaminase assay for high-throughput screening applications. J. Biomol. Screen. 11, 836-843 https://doi.org/10.1177/1087057106291585
  28. Yi, S.-J., Kim, K.H., Choi, H.J., Yoo, J.O., Jung, H.-I., Han, J.-A., Kim, Y.-M., Suh, I.B., and Ha, K.-S. (2006). $[Ca(2+)]$-dependent generation of intracellular reactive oxygen species mediates maitotoxin-induced cellular responses in human umbilical vein endothelial cells. Mol. Cells 21, 121-128
  29. Zhang, J., Lesort, M., Guttmann, R.P., and Johnson, G.V. (1998). Modulation of the in situ activity of tissue transglutaminase by calcium and GTP. J. Biol. Chem. 273, 2288-2295 https://doi.org/10.1074/jbc.273.4.2288
  30. Zhu, H., Klemic, J.F., Chang, S., Bertone, P., Casamayor, A., Klemic, K.G., Smith, D., Gerstein, M., Reed, M.A., and Snyder, M. (2000). Analysis of yeast protein kinases using protein chips. Nat. Genet. 26, 283-289 https://doi.org/10.1038/81576

Cited by

  1. Immunoassay of in vitro activated human tissue transglutaminase vol.411, pp.1, 2009, https://doi.org/10.1016/j.ab.2010.12.011
  2. Quantification of human tissue transglutaminase by a luminescence sandwich enzyme-linked immunosorbent assay vol.419, pp.2, 2009, https://doi.org/10.1016/j.ab.2011.08.026
  3. Enzymatic reactions on immobilised substrates vol.42, pp.15, 2013, https://doi.org/10.1039/c3cs60018a
  4. Protein arrays for quantitative enzymatic profiling and serodiagnosis vol.9, pp.4, 2015, https://doi.org/10.1007/s13206-015-9401-2
  5. A peptide array-based serological protein kinase A activity assay and its application in cancer diagnosis vol.140, pp.19, 2015, https://doi.org/10.1039/c5an01151e
  6. Array-based Investigation of Amino Acids Responsible for Regulation of Transamidase and Kinase Activities of Transglutaminase 2 vol.13, pp.3, 2019, https://doi.org/10.1007/s13206-019-3307-3