Acknowledgement
Supported by : Ministry for Health, Welfare and Family Affairs
References
- Brunger, A.T., Adams, P.D., Clore, G.M., and DeLano, W.L. (1998). Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Cryst. D. 54, 905-921 https://doi.org/10.1107/S0108767398011465
-
B
$\ddot{u}$ rkle, A. (2005). Poly(ADP-ribose): The most elaborate metabolite of$NAD^+ $ . FEBS J. 272, 4576-4589 https://doi.org/10.1111/j.1742-4658.2005.04864.x - Drevs, J., Loser, R., Rattel, B., and Esser, N. (2003). Antiangiogenic potency of FK866IK22.175, a new inhibitor of intracellular NAD biosynthesis, in murine renal cell carcinoma. Anticancer Res. 23, 4853-4858
- Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Cryst. D. 60, 2126-2132 https://doi.org/10.1107/S0907444904019158
- Hasmann, M., and Shcemainda, I. (2003). FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Res. 63, 7436-7442
- Holen, K., Saltz, L.B., Hollywood, E., Burk, K., and Hauske, A.R. (2008). The pharmacokinetics, toxicities, and biologic effects of FK866, a nicotinamide adenine dinucleotide biosynthesis inhibitor. Invest. New Drugs 26, 45-51 https://doi.org/10.1007/s10637-007-9083-2
-
Hufton, S.E., Moerkerk, P.T., Brandwijk, R., de Bru
$\ddot{i}$ ne, A.P., Arends, J.W., and Hoogenboom, H.R. (1999). A profile of differentially expressed genes in primary colorectal cancer using suppression subtractive hybridization. FEBS Lett. 463, 77-82 https://doi.org/10.1016/S0014-5793(99)01578-1 - Khan, J.A., Tao, X., and Tong, L. (2006). Molecular basis for the inhibition of human visfatin, a novel target for anticancer agents. Nat. Struct. Mol. Biol. 13, 582-586 https://doi.org/10.1038/nsmb1105
- Kim, M.K., Lee, J.H., Kim, H., Park, S.J., Kim, S.H., Kang, G.B., Lee, Y.S., Kim, J.B., Kim, K.K., Suh, S.W., et al. (2006). Crystal structure of visfatinIpre-B cell colony enhancing factor 1Inicotinamide phosphoribosyltransferase, free and in complex with the anticancer agent FK-866. J. Mol. Biol. 362, 66-77 https://doi.org/10.1016/j.jmb.2006.06.082
- Laskowski, R.A., MacArthur, M.W., Moss, D.S., and Thornton, J.M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283-291 https://doi.org/10.1107/S0021889892009944
- Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326 https://doi.org/10.1016/S0076-6879(97)76066-X
- Sanner, M.F. (1999). Python: a programming language for software integration and development. J. Mol. Graphics Mod. 17, 57-61
- Schreiber, V., Dantzer, F., Ame, J.C., and de Murcia, G. (2006). Poly(ADP-ribose): novel functions for an old molecule. Nat. Rev. Mol. Cell. Biol. 7, 517-528 https://doi.org/10.1038/nrm1963
- Vagin, A., and Teplyakov, A. (2000). An approach to multi-copy search in molecular replacement. Acta Cryst. D. 56, 1622-1624 https://doi.org/10.1107/S0907444900013780
-
Van Beijnum, J.R., Moerkerk, P.T., Gerbers, A.J., De Bru
$\ddot{i}$ ne, A.P., Arends, J.W., Hoogenboom, H.R., and Hufton, S.E. (2002). Target validation for genomics using peptide-specific phage antibodies: a study of five gene products overexpressed in colorectal cancer. Int. J. Cancer 101, 118-127 https://doi.org/10.1002/ijc.10584 -
Wang, T., Zhang, X., Bheda, P., Revollo, J.R., Imai, S., and Wolberger, C. (2006). Structure of NamptIPBEFIvisfatin, a mammalian
$NAD^+$ biosynthetic enzyme. Nat. Struct. Mol. Biol. 13, 661-662 https://doi.org/10.1038/nsmb1114 - Won, J., Chung, S.Y., Kim, S.B., Byun, B.H., Yoon, Y.S., and Joe, C.O. (2006). Dose-dependent UV stabilization of p53 in cultured human cells undergoing apoptosis is mediated by poly(ADPribosyl) ation. Mol. Cells 21, 218-223
-
Wosikowski, K., Mattern, K., Schemainda, I., Hasmann, M., Rattel, B., and L
$\ddot{o}$ ser, R. (2002). WK175, a novel antitumor agent, decreases the intracellular nicotinamide adenine dinucleotide concentration and induces the apoptotic cascade in human leukemia cells. Cancer Res. 62, 1057-1062 - Ziegler, M. (2000). New functions of a long-known molecule. Eur. J. Biochem. 267, 1550-1564 https://doi.org/10.1046/j.1432-1327.2000.01187.x
Cited by
- Chemical Proteomics Identifies Nampt as the Target of CB30865, An Orphan Cytotoxic Compound vol.17, pp.6, 2009, https://doi.org/10.1016/j.chembiol.2010.05.008
- Target enzyme mutations are the molecular basis for resistance towards pharmacological inhibition of nicotinamide phosphoribosyltransferase vol.10, pp.None, 2009, https://doi.org/10.1186/1471-2407-10-677
- Inhibition of Nicotinamide Phosphoribosyltransferase vol.285, pp.44, 2009, https://doi.org/10.1074/jbc.m110.136739
- Analogues of 4-[(7-Bromo-2-methyl-4-oxo-3H-quinazolin-6-yl)methylprop-2-ynylamino]-N-(3-pyridylmethyl)benzamide (CB-30865) as Potent Inhibitors of Nicotinamide Phosphoribosyltransferase (Nampt) vol.53, pp.24, 2010, https://doi.org/10.1021/jm101145b
- Design, synthesis and X-ray crystallographic study of NAmPRTase inhibitors as anti-cancer agents vol.46, pp.4, 2009, https://doi.org/10.1016/j.ejmech.2011.01.034
- Visfatin exerts angiogenic effects on human umbilical vein endothelial cells through the mTOR signaling pathway vol.1813, pp.5, 2011, https://doi.org/10.1016/j.bbamcr.2011.02.009
- A fluorometric assay for high-throughput screening targeting nicotinamide phosphoribosyltransferase vol.412, pp.1, 2011, https://doi.org/10.1016/j.ab.2010.12.035
- Inhibition of nicotinamide phosphoribosyltransferase modifies LPS-induced inflammatory responses of human monocytes vol.18, pp.3, 2012, https://doi.org/10.1177/1753425911423853
- PBEF/NAMPT/visfatin: a promising drug target for treating rheumatoid arthritis? vol.4, pp.6, 2009, https://doi.org/10.4155/fmc.12.34
- Visfatin and Cardio–Cerebro–Vascular Disease vol.59, pp.1, 2009, https://doi.org/10.1097/fjc.0b013e31820eb8f6
- Anti-proliferation effect of APO866 on C6 glioblastoma cells by inhibiting nicotinamide phosphoribosyltransferase vol.674, pp.2, 2012, https://doi.org/10.1016/j.ejphar.2011.11.017
- Medicinal Chemistry of Nicotinamide Phosphoribosyltransferase (NAMPT) Inhibitors vol.56, pp.16, 2009, https://doi.org/10.1021/jm4001049
- Structural and Biochemical Analyses of the Catalysis and Potency Impact of Inhibitor Phosphoribosylation by Human Nicotinamide Phosphoribosyltransferase vol.15, pp.8, 2009, https://doi.org/10.1002/cbic.201402023
- New function for Escherichia coli xanthosine phophorylase (xapA): genetic and biochemical evidences on its participation in NAD + salvage from nicotinamide vol.14, pp.None, 2014, https://doi.org/10.1186/1471-2180-14-29
- On-Target Effect of FK866, a Nicotinamide Phosphoribosyl Transferase Inhibitor, by Apoptosis-Mediated Death in Chronic Lymphocytic Leukemia Cells vol.20, pp.18, 2009, https://doi.org/10.1158/1078-0432.ccr-14-0624
- Physiological and pathophysiological roles of NAMPT and NAD metabolism vol.11, pp.9, 2015, https://doi.org/10.1038/nrendo.2015.117
- Chicken Is a Useful Model to Investigate the Role of Adipokines in Metabolic and Reproductive Diseases vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/4579734
- Advances in NAD-Lowering Agents for Cancer Treatment vol.13, pp.5, 2009, https://doi.org/10.3390/nu13051665
- Nicotinamide phosphoribosyltransferase inhibitor ameliorates mouse aging-induced cognitive impairment vol.41, pp.10, 2009, https://doi.org/10.1177/0271678x211006291
- PAK4 and NAMPT as Novel Therapeutic Targets in Diffuse Large B-Cell Lymphoma, Follicular Lymphoma, and Mantle Cell Lymphoma vol.14, pp.1, 2009, https://doi.org/10.3390/cancers14010160