DOI QR코드

DOI QR Code

신생아집중치료실 입원아의 혈청 IGF-1과 성장 및 질병 사이의 관련성

The association between serum IGF-1 and neonatal growth and disease in a NICU

  • 김정옥 (경북대학교 의과대학 소아과학교실) ;
  • 임해리 (경북대학교 의과대학 소아과학교실) ;
  • 김행미 (경북대학교 의과대학 소아과학교실)
  • Kim, Jung Ok (Department of Pediatrics, College of Medicine, Kyungpook National University) ;
  • Lim, Hae Ri (Department of Pediatrics, College of Medicine, Kyungpook National University) ;
  • Kim, Heng Mi (Department of Pediatrics, College of Medicine, Kyungpook National University)
  • 투고 : 2008.02.26
  • 심사 : 2009.01.21
  • 발행 : 2009.02.15

초록

목 적 : 신생아의 IGF-1 정상치를 설정하고 신생아 성장 및 질병상태와 IGF-1치의 연관성을 조사하여 신생아 성장 및 질병 경과를 추정하는 지표로 사용할 수 있는지 알아보고자 하였다. 방 법 : 2007년 3월부터 7월까지 5개월 동안 경북대학교 신생아 집중치료실에 입원한 환아들을 대상으로 입원 시 1회 채혈하여 RIA법으로 IGF-1를 측정하였다. 아울러 환아들의 의무 기록을 후향적으로 검토하여 출생 시 체중, 재태 주령, 분만 방법, 동반 질환 등을 조사하였다. 결 과 : 출생 직후 채혈이 가능했던 만삭아 22명과 미숙아 30명의 혈중 IGF-1은 각각 $53.4{\pm}40.0$, $31.6{\pm}27.3$ ng/mL로 미숙아에서 유의하게 낮았다(P<0.05). 건강한 만삭아와 질환을 동반한 만삭아의 IGF-1은 각각 $64.1{\pm}39.5$, $46.0{\pm}40.2$ ng/mL로 질병 동반 시 유의하게 낮았다(P<0.05). 건강한 미숙아와 질환 동반 미숙아의 IGF-1은 각각 $33.2{\pm}23.3$, $30.6{\pm}30.4$ ng/mL로 두군 사이에 유의한 차이를 보이지 않았으나 이들 모두 건강한 만삭아에 비해 의의 있게 낮았다(P<0.05). 출생 8일후 이후 입원, 채혈한 신생아는 27명으로 이들 중 입원 시 체중이 출생체중에 비해 감소한 환아의 IGF-1은 $13.3{\pm}19.9$ ng/mL, 입원 시 체중이 출생체중에 비해 증가한 환아의 IGF-1은 $70.8{\pm}36.2$ ng/mL로 체중 감소군의 IGF-1이 유의하게 낮았다(P<0.001). 성별 및 분만법에 따른 IGF-1의 차이는 관찰되지 않았다. 결 론 : 미숙아는 만삭아에 비해 출생 당일의 IGF-1치가 낮았으며, 출생 후 체중이 감소한 만삭아의 IGF-1은 체중이 증가한 만삭아에 비해 유의하게 낮았다. 이러한 소견으로 보아 신생아의 혈청 IGF-1은 재태 주령, 출생 후 체중 증가와 관련성을 가지는 것으로 보인다.

Purpose : The objective of this study was to establish the serum IGF-1 level in newborn infants, and investigate its association with growth and diseases. Methods : In a retrospective study, serum IGF-1 levels were measured for newborn infants admitted to NICU at Kyungpook University Hospital from March 2007 to July 2007. Birth data, disease history, and hospital course were obtained from medical records. Results : Of 52 blood samples obtained at birth, serum IGF-l levels in 30 preterm infants ($31.6{\pm}27.3$ ng/mL) were lower than in 22 full-term infants ($53.4{\pm}40.0$ ng/mL; P<0.05). In sick full-term infants, serum IGF-1 levels ($46.0{\pm}40.2$ ng/mL) were lower than in healthy full-term infants ($64.1{\pm}39.5$ ng/mL; P<0.05). In preterm infants, there were no differences in IGF-1 levels between healthy ($33.2{\pm}23.3$ ng/mL) and sick infants ($30.6{\pm}30.4$ ng/mL); however, IGF-1 levels in both sick and healthy preterm infants were lower than in healthy full-term infants. Among infants admitted after 8 days of life, serum IGF-1 levels were higher in infants who gained weight ($70.8{\pm}36.2$ ng/mL) than in infants who lost weight ($13.3{\pm}19.9$ ng/mL; P<0.01); however IGF-1 levels showed no difference between gender or method of delivery. Conclusion : The study showed lower IGF-l levels in preterm infants than in full-term infants. Additionally, the IGF-l level in infants with weight loss was lower than in infants with weight gain. These results indicate that serum IGF-1 is associated with gestational age and postnatal growth.

키워드

참고문헌

  1. Juul A. Serum levels of insulin-like growth factor I and its binding proteins in health and disease. Growth Horm IGF Res 2003;13:113-70 https://doi.org/10.1016/S1096-6374(03)00038-8
  2. Akcakus M, Koklu E, Kurtoqlu S, Kula M, Koklu SS. The relationship among intrauterine growth, insulinlike growth factor I (IGF-I), IGF-binding protein-3, and bone mineral status in newborn infants. Am J Perinatol 2006;23:473-80 https://doi.org/10.1055/s-2006-954822
  3. Yeung MY. Somatotropic axis derangement as an underlying factor in the genesis of retinopathy of prematurity. Acta Paediatr 2006;95:1334-40 https://doi.org/10.1080/08035250600684461
  4. Villegas BE, Fernandez MF, Gonzalez R, Gallardo GJM. [Serum IGF-I levels in retinopathy of prematurity. New indications for ROP screening]. Arch Soc Esp Oftalmol 2005;80:233-8 https://doi.org/10.4321/S0365-66912005000400006
  5. Clemmons DR. Value of insulin-like growth factor system markers in the assessment of growth hormone status. Endocrinol Metab Clin North Am 2007;36:109-29 https://doi.org/10.1016/j.ecl.2006.11.008
  6. Iniguez G, Ong K, Bazaes R, Avila A, Salazar T, Dunger D, et al. Longitudinal changes in insulin-like growth factor-I, insulin sensitivity, and secretion from birth to age three years in small-for-gestational-age children. J Clin Endocrinol Metab 2006;91:4645-9 https://doi.org/10.1210/jc.2006-0844
  7. Chellakooty M, Juul A, Boisen KA, Damgaard IN, Kai CM, Schmidt IM, et al. A prospective study of serum insulin-like growth factor I (IGF-I) and IGF-binding protein-3 in 942 healthy infants: associations with birth weight, gender, growth velocity, and breastfeeding. J Clin Endocrinol Metab 2006;91:820-6 https://doi.org/10.1210/jc.2005-0950
  8. Wan G, Yu S, Liu J. Serum concentration of insulin-like growth factor-I in cord blood. Zhonghua Fu Chan Ke Za Zhi 1998;33:720-1
  9. Zhu M, Xia Y, Zhang Z. [The relation between human fetal growth and the blood levels of insulin-like growth factor-I]. Zhonghua Fu Chan Ke Za Zhi 1998;33:667-9
  10. Engstr${\ddot{o}}$m E, Niklasson A, Wikland KA, Ewald U, Hellström A. The role of maternal factors, postnatal nutrition, weight gain, and gender in regulation of serum IGF-I among preterm infants. Pediatr Res 2005;57:605-10 https://doi.org/10.1203/01.PDR.0000155950.67503.BC
  11. Kaplowitz PB, D'Ercole AJ, Van Wyk JJ, Underwood LE. Plasma somatomedin-C during the first year of life. J Pediatr 1982;100:932-4 https://doi.org/10.1016/S0022-3476(82)80519-2
  12. Wang HS, Lee JD, Soong YK, Effects of labor in serum levels of insuline and insuline-like growth factor-binding proteins at the time of delivery. Acta Obstet Gynecol Scand 1995;7:186-93
  13. Yang SW, Yu JS. Relationship of insulin-like growth factor- I, insulin-like growth factor binding protein-3, insulin, growth hormone in cord blood and maternal factors with birth height and birthweight. Pediatr Int 2000;42:31-6 https://doi.org/10.1046/j.1442-200x.2000.01167.x
  14. Fliesen T, Maiter D, Gerard G, Underwood LE, Maes M, Ketelslegers JM. Reduction of serum insulin-like growth factor-I by dietary protein restriction is age dependent. Pediatr Res 1989;26:415-9 https://doi.org/10.1203/00006450-198911000-00010
  15. Cutfield WS, Regan FA, Jackson WE, Jefferies CA, Robinson EM, Harris M, et al. The endocrine consequences for very low birth weight premature infants. Growth Horm IGF Res. 2004;14 Suppl A:S130-5 https://doi.org/10.1016/j.ghir.2004.03.028
  16. Albertsson-Wikland K, Boguszewski M, Karlberg J. Children born small-for-gestational age: postnatal growth and hormonal status. Horm Res 1998;49 Suppl 2:7-13
  17. Verkauskiene R, Jaquet D, Deghmoun S, Chevenne D, Czernichow P, L${\acute{e}}$vy-Marchal C. Smallness for gestational age is associated with persistent change in insulin-like growth factor I (IGF-I) and the ratio of IGF-I/IGF-binding protein- 3 in adulthood. J Clin Endocrinol Metab 2005;90:5672-6 https://doi.org/10.1210/jc.2005-0423
  18. Smith LE. IGF-1 and retinopathy of prematurity in the preterm infant. Biol Neonate 2005;88:237-44 https://doi.org/10.1159/000087587
  19. Smith LE. Pathogenesis of retinopathy of prematurity. Growth Horm IGF Res 2004;14 Suppl A:S140-4 https://doi.org/10.1016/j.ghir.2004.03.030
  20. Chen J, Smith LE. Retinopathy of prematurity. Angiogenesis 2007;10:133-40 https://doi.org/10.1007/s10456-007-9066-0
  21. Hellstr${\ddot{o}}$m A, Perruzzi C, Ju M, Engstr${\ddot{o}}$m E, Hard AL, Liu JL, et al. Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: direct correlation with clinical retinopathy of prematurity. Proc Natl Acad Sci U S A 2001; 98:5804-8 https://doi.org/10.1073/pnas.101113998
  22. L${\ddot{o}}$fqvist C, Andersson E, Sigurdsson J, Engstr${\ddot{o}}$m E, Hard AL, Niklasson A, et al. Longitudinal postnatal weight and insulin-like growth factor I measurements in the prediction of retinopathy of prematurity. Arch Ophthalmol 2006;124: 1711-8 https://doi.org/10.1001/archopht.124.12.1711
  23. L${\ddot{o}}$fqvist C, Engstr${\ddot{o}}$m E, Sigurdsson J, Hard AL, Niklasson A, Ewald U, et al. Postnatal head growth deficit among premature infants parallels retinopathy of prematurity and insulin-like growth factor-1 deficit. Pediatrics 2006;117: 1930-8 https://doi.org/10.1542/peds.2005-1926
  24. Mutapcic L, Wren SM, Leske DA, Fautsch MP, Holmes JM. The effect of L-thyroxine supplementation on retinal vascular development in neonatal rats. Curr Eye Res 2005;30: 1035-40 https://doi.org/10.1080/02713680500320711
  25. Mookadam M, Leske DA, Fautsch MP, Lanier WL, Holmes JM. The anti-thyroid drng methimazole induces neovascularization in the neonatal rat analogous to ROP. Invest Ophthalmol Vis Sci 2004;45:4145-50 https://doi.org/10.1167/iovs.04-0675
  26. Capoluongo E, Ameqlio F, Lulli P, Minucci A, Santonocito C, Concolino P, et al. Epithelial lining fluid free IGF-I-to- PAPP-A ratio is associated with bronchopulmonary dysplasia in preterm infants. Am J Physiol Endocrinol Metab 2007;292:E308-13 https://doi.org/10.1152/ajpendo.00251.2006
  27. Hellestr${\ddot{o}}$m A, Engstr${\ddot{o}}$m E, Hard AL, Albertsson-Wikland K, Carlsson B, Niklasson A, et al. Postnatal serum insulin- like growth factor I deficiency is associated with retinopathy of prematurity and other complications of premature birth. Pediatrics 2003;112:1016-20 https://doi.org/10.1542/peds.112.5.1016
  28. Dinleyici EC, Tekin N, Colak O, Aksit MA. Cord blood IGF-1 and IGF BP-3 levels in asphyxiated term newborns. Neuro Endocrinol Lett 2006;27:745-7
  29. Roelfsema V, Gunn AJ, Breier BH, Quaedackers JS, Bennet L. The effect of mild hypothermia on insulin-like growth factors after severe asphyxia in the preterm fetal sheep. J Soc Gynecol Investig 2005;12:232-7 https://doi.org/10.1016/j.jsgi.2005.01.025