DOI QR코드

DOI QR Code

Chemokines Gene Expression of RAW 264.7 Cells by Actinobacillus actinomycetemcomitans Lipopolysaccharide Using Microarray and RT-PCR Analysis

  • Chung, Jin (Department of Microbiology, School of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Choi, Mun Jeoung (Department of Microbiology, School of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Jeong, So Yeon (Department of Microbiology, School of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Oh, Jong Suk (Department of Microbiology, Chonnam National University) ;
  • Kim, Hyung Keun (Cardiovascular Research Institute, Chonnam National University)
  • Received : 2008.07.29
  • Accepted : 2008.11.28
  • Published : 2009.02.28

Abstract

Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans) is an important pathogen casuing aggressive periodontitis. The present study was designed to investigate the chemokines expression regulated by A. actinomycetemcomitans lipopolysaccharide (LPS). Chemokines genes expression profiling was performed in Raw 264.7 cells by analyses of microarray and reverse transcription-polymerase chain reaction (RT-PCR). Microarray results showed that the induction of monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-$1{\alpha}$ (MIP-$1{\alpha}$), MIP-$1{\beta}$, MIP-$1{\gamma}$, regulated upon activation, normal T-cell expressed and secreted (RANTES), macrophage inflammatory protein-2 (MIP-2), and interferon-${\gamma}$ inducible protein 10 (IP 10) by A. actinomycetemcomitans LPS was increased to 12.5, 1.53, 9.09, 17.3, 2.82, 16.1, and 18.1 folds at 18 h, respectively. To check these chemokines expression by A. actinomycetemcomitans LPS, we examined gene expressions by RT-PCR, and found that the expression of MIP-$1{\beta}$, MIP-$1{\gamma}$, RANTES, MIP-2, and IP 10 was increased 107.1, 93.6, 106.8, 86.5, and 162.0 folds at 18 h, respectively. These results indicate that A. actinomycetemcomitans LPS stimulates the several chemokines expressions (MIP-$1{\alpha}$, MIP-$1{\beta}$, MIP-$1{\gamma}$, RANTES, MIP-2, and IP 10) in Raw 264.7 cells.

Keywords

Acknowledgement

Supported by : Pusan National University

References

  1. Baggiolini, M., Dewald, B., Moseries, B. (1997). Human chemokines: an update. Annu. Rev. Immunol. 15, 675-705 https://doi.org/10.1146/annurev.immunol.15.1.675
  2. Birkedal-Hansen, H. (1993). Role of cytokines and inflammatory mediators in tissue destruction. J. Periodon. Res. 28, 500-510 https://doi.org/10.1111/j.1600-0765.1993.tb02113.x
  3. Charo, I.F., and Ransohoff, R.M. (2006). The many roles of chemokines and chemokine receptors in inflammation. N. Engle. J. Med. 354, 610-621 https://doi.org/10.1056/NEJMra052723
  4. Gamonal, J., Acevedo, A., Bascones, A., Jarge, O., and Silva, A. (2001). Characterization of cellular infiltrate, detection of chemokine receptor CCR5 and interleukin-8 and RANTES chemokines in adult periodontitis. J. Peridontal. Res. 36, 194-203 https://doi.org/10.1034/j.1600-0765.2001.360309.x
  5. Jiang, Y., and Graves, D.T. (1999). Periodontal pathogens stimulate CC-chemokine production by mononuclear and bonederived cells. J. Periodontol. 70, 1472-1478 https://doi.org/10.1902/jop.1999.70.12.1472
  6. Jiang, Y., Russel, T.R., Graves, D.T., Cheng, H., Nong, S.U., and Livitz, S.M. (1996). Monocyte chemoattractant protein 1 and interleukin-8 production in mononuclear cells stimulated by oral microorganisms. Infect. Immun. 64, 4450-4455
  7. Johnson, Z., Schwarz, M., Power, C.A., Wells, T.N., and Proudfoot, A.E. (2005). Multi-faceted strategies to combat disease by interference with the chemokine system. Trends Immunol. 26, 268-274 https://doi.org/10.1016/j.it.2005.03.001
  8. Kabashima, H., Yoneda, M., Nagata, K., Hirofuji, T., and Maeda, K. (2002). The presence of chemokine (MCP-1. MIP-1alpha, MIP-1beta, IP-10, RANTES)-positive cells and chemokine receptor (CCR5, CCR3)-positive cells in inflamed human gingival tissues. Cytokine 20, 70-77 https://doi.org/10.1006/cyto.2002.1985
  9. Kim, Y.S., Kim, J.S., Jung, H.C., and Song, I.S. (2004). The effects of thalidomide on the stimulation of NF-kappaB activity and TNF-alpha production by LSP in a human colonic epithelial cell line. Mol. Cells 17, 210-216
  10. Lee, S.K., Choi, B.K., Kang, W.J., Kim, Y.H., Park, H.Y., Kim, K.H., and Kwon, B.S. (2008). MCP-1 derived from stromal keratocyte induces corneal infiltration of CD4+ T cells in herpetic stromal keratitis. Mol. Cells 26, 67-73
  11. Oido-Mori, M., Rezzonico, R., Wang, P.L., Kowashi, W.Y., Dayer, J.M., and Baehni, P.C. (2001). Porphyromonas gingivalis gingipain-R enhances interleukin-8 but decreases gamma interferoninducible protein 10 production by human gingival fibroblast in response to T-cell contact. Infect. Immun. 69, 4493-4501 https://doi.org/10.1128/IAI.69.7.4493-4501.2001
  12. Saglie, F.R., Simon, K., Merrill, J., and Koeffler, H.P. (1990). Lipopolysaccharide from Actinobacillus actinomycetemcomitans stimulates macrophage to produce interleukin-1 and tumor necrosis factor mRNA and protein. Oral Microbiol. Immunol. 5, 256-562 https://doi.org/10.1111/j.1399-302X.1990.tb00422.x
  13. Sfakianakis, A., Barr, C.E., and Kreutzer, D. (2001). Mechanisms of Actinobacillus actinomycetemcomitans-induced expression of interleukin-8 in gingival epithelial cells. J. Peridontol. 72, 1413-1419 https://doi.org/10.1902/jop.2001.72.10.1413
  14. Slot, J. (1999). Update on Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in human periodontal disease. J. Int. Acad. Peridontol. 4, 121-126
  15. Theilade, E. (1989). Advances in oral microbiology. Ann. R. Australas. Coll. Dent. Surg. 10, 62-71
  16. Tobias, P.S., Gegner, J., Tapping, R., Orr, S., Methison, J., Lee, J.D., Kravchenko, V., Han, J., and Ulevitch, R.J. (1997). Lipopolysaccharide dependent cellular activation. J. Periodontal. Res. 32, 99-103 https://doi.org/10.1111/j.1600-0765.1997.tb01388.x
  17. Tonetti, M.S., Imboden, M.A., Gerber, L., Lang, N.P., Laissue, J., and Mueller, C. (1994). Localized expression of mRNA for phagocyte-specific chemotactic cytokines in human periodontal infection. Infect. Immun. 62, 4005-4014
  18. Westphal, O., and Jann, K. (1965). Bacterial lipopolysaccharides: extraction with phenol water and further application of the procedure. Methods Carbohydr. Chem. 5, 83
  19. Zambon, J.J. (1985). Actinobacillus actinomycetemcomitans in human periodontal disease. J. Clin. Peridontol. 12, 1-20 https://doi.org/10.1111/j.1600-051X.1985.tb01348.x

Cited by

  1. X-linked Foxp3 (Scurfy) Mutation Dominantly Inhibits Submandibular Gland Development and Inflammation Respectively through Adaptive and Innate Immune Mechanisms vol.183, pp.5, 2009, https://doi.org/10.4049/jimmunol.0804355
  2. Mycobacterium tuberculosis-Induced Expression of Leukotactin-1 Is Mediated by the PI3-K/PDK1/Akt Signaling Pathway vol.29, pp.1, 2010, https://doi.org/10.1007/s10059-010-0003-5
  3. Analysis of genomic profile in mouse lymphoma L5178Y cells exposed to food colorant gardenia yellow vol.4, pp.4, 2010, https://doi.org/10.1007/s13206-010-4405-4
  4. Bioinformatics and Data Mining Studies in Oral Genomics and Proteomics: New Trends and Challenges vol.4, pp.None, 2010, https://doi.org/10.2174/1874210601004010067
  5. Bioinformatics and Data Mining Studies in Oral Genomics and Proteomics: New Trends and Challenges vol.4, pp.None, 2009, https://doi.org/10.2174/1874210601004020067
  6. RahU: An inducible and functionally pleiotropic protein in Pseudomonas aeruginosa modulates innate immunity and inflammation in host cells vol.270, pp.2, 2009, https://doi.org/10.1016/j.cellimm.2011.05.012
  7. Nuclear Factor-${\kappa}B$ Dependent Induction of TNF-${\alpha}$ and IL-$1{\beta}$ by the Aggregatibacter actinomycetemcomitans Lipopolysaccharide in RAW 264.7 Cells vol.39, pp.1, 2009, https://doi.org/10.11620/ijob.2014.39.1.015
  8. Modulation of cell proliferation, survival and gene expression by RAGE and TLR signaling in cells of the innate and adaptive immune response: role of p38 MAPK and NF-KB vol.22, pp.3, 2009, https://doi.org/10.1590/1678-775720130593
  9. The effects of macrophages on cardiomyocyte calcium‐handling function using in vitro culture models vol.7, pp.13, 2009, https://doi.org/10.14814/phy2.14137