DOI QR코드

DOI QR Code

Prediction of Parathyroid Hormone Signalling Potency Using SVMs

  • Yoo, Ahrim (Department of Chemical and Biological Engineering, Korea University) ;
  • Ko, Sunggeon (Department of Biochemistry, Yonsei University) ;
  • Lim, Sung-Kil (Department of Internal Medicine, School of Medicine, Yonsei University) ;
  • Lee, Weontae (Department of Biochemistry, Yonsei University) ;
  • Yang, Dae Ryook (Department of Chemical and Biological Engineering, Korea University)
  • 투고 : 2008.11.26
  • 심사 : 2009.04.14
  • 발행 : 2009.05.31

초록

Parathyroid hormone is the most important endocrine regulator of calcium concentration. Its N-terminal fragment (1-34) has sufficient activity for biological function. Recently, site-directed mutagenesis studies demonstrated that substitutions at several positions within shorter analogues (1-14) can enhance the bioactivity to greater than that of PTH (1-34). However, designing the optimal sequence combination is not simple due to complex combinatorial problems. In this study, support vector machines were introduced to predict the biological activity of modified PTH (1-14) analogues using mono-substituted experimental data and to analyze the key physicochemical properties at each position that correlated with bioactivity. This systematic approach can reduce the time and effort needed to obtain desirable molecules by bench experiments and provide useful information in the design of simpler activating molecules.

키워드

과제정보

연구 과제 주관 기관 : Korea Science and Engineering Foundation

참고문헌

  1. Aurora, R., and Rose, G.D. (1998). Helix capping. Protein Sci. 7, 21-38 https://doi.org/10.1002/pro.5560070103
  2. Barazza, A., Wittelsberger, A., Fiori, N., Schievano, E., Mammi, S., Toniolo, C., Alexander, J.M., Rosenblatt, M., Peggion, E., and Chorev, M. (2005). Bioactive N-terminal undecapeptides derived from parathyroid hormone: the role of -helicity. J. Pept. Res. 65, 23-35 https://doi.org/10.1111/j.1399-3011.2005.00207.x
  3. Bhasin, M., and Raghava, G.P. (2004). Analysis and prediction of affinity of TAP binding peptides using cascade SVM. Protein Sci.13, 596-607 https://doi.org/10.1110/ps.03373104
  4. Bhaskaran, R., and Ponnuswamy, P.K. (1988). Positional flexibilities of amino acid residues in globular proteins. Int. J. Peptide Protein Res. 32, 241-255 https://doi.org/10.1111/j.1399-3011.1988.tb01258.x
  5. Bisello, A., Adams, A.E., Mierke, D.F., Pellegrini, M., Rosenblatt, M., Suva, L.J., and Chorev, M. (1998). Parathyroid hormonereceptor interactions identified directly by photocross-linking and molecular modeling studies. J. Biol. Chem. 273, 22498-22505 https://doi.org/10.1074/jbc.273.35.22498
  6. Chorev, M. (2002). Parathyroid hormone 1 receptor: insights into structure and function. Receptors Channels 8, 219-242 https://doi.org/10.1080/10606820213685
  7. Crammer, K., and Singer, Y. (2001). On the algorithm implementation of multi-class SVM. J.M.L.R. 2, 265-292 https://doi.org/10.1162/15324430260185628
  8. Cristianini, N., and Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernel-based learning methods (New York: Cambridge University Press)
  9. Dubey, A., Realff, M.J., Lee, J.H., and Bommarium, A.S. (2004). Support vector machines for learning to identify the critical position of a protein. J. Theor. Biol. 234, 351-361 https://doi.org/10.1016/j.jtbi.2004.11.037
  10. Jin, L., Briggs, S.L., Chandrasekhar, S., Chirgadze, N.Y., Clawson, D.K., Schevitz, R.W., Smiley, D.L., Tashjian, A.H., and Zhang, F. (2000). Crystal structure of human parathyroid hormone 1-34 at 0.9-A resolution. J. Biol. Chem. 275, 27238-27244
  11. Joachims, T. (1999). Making large-scale SVM learning practical. In B. Scholkopf, ed., Advances in kernel methods - support vector learning, (Cambridge, Massachusetts: The MIT Press)
  12. Karle, I.L., and Balaram, P. (1990). Structural characteristics of alpha-helical peptide molecules containing Aib residues. Biochemistry 29, 6747-6756 https://doi.org/10.1021/bi00481a001
  13. Kawashima, S., Ogata, H., and Kanehisa, M. (1999). AAindex: amino acid index database. Nucleic Acids Res. 27, 368-369 https://doi.org/10.1093/nar/27.1.368
  14. Klein, P., Kanehisa, M., and DeLisi, C. (1984). Prediction of protein function from sequence properties. Discriminant analysis of a data base. Biochim. Biophys. Acta 787, 221-226 https://doi.org/10.1016/0167-4838(84)90312-1
  15. Kowalczyk, W., Prahl, A., Dawidowska, O., Derdowska, I., Sobolewski, D., Hartrodt, B., Neubert, K., Slaninova, J., and Lammek, B. (2005). The influence of 1-aminocyclopentane-1-carboxylic acid at position 2 or 3 of AVP and its analogues on their pharmacological properties. J. Pept. Sci. 11, 584-588 https://doi.org/10.1002/psc.656
  16. Krigbaum, W.R., and Komoriya, A. (1979). Local interactions as a structure determinant for protein molecules: II. Biochim. Biophys. Acta 576, 204-248 https://doi.org/10.1016/0005-2795(79)90498-7
  17. Levitt, M. (1976). A simplified representation of protein conformations for rapid simulation of protein folding. J. Mol. Biol. 104, 59-107 https://doi.org/10.1016/0022-2836(76)90004-8
  18. Luck, M.D., Carter, P.H., and Gardella, T.J. (1999). The (1-14) fragment of parathyroid hormone (PTH) activates intact and amino-terminally truncated PTH-1 receptors. Mol. Endocrinol. 13, 670-680 https://doi.org/10.1210/me.13.5.670
  19. Martinez, W.L., and Martinez, A.R. (2002). Computational statistics handbook with MATLAB. (Boca Raton, London, New York, Washington D.C.: Chapman and Hall/CRC)
  20. Maxfield, F.R., and Scheraga, H.A. (1976). Status of empirical methods for the prediction of protein backbone topography. Biochemistry 15, 5138-5153 https://doi.org/10.1021/bi00668a030
  21. Meirovitch, H., Rackovsky, S., and Scheraga, H.A. (1980). Empirical studies of hydrophobicity: 1. Effect of protein size on the hydrophobic behavior of amino acids. Macromolecules 13, 1398-1405 https://doi.org/10.1021/ma60078a013
  22. Mita, K., Ichimura, S., and Zama, M. (2004). Conformation of poly (L-homoarginine). Biopolylmers 19, 1123-1135 https://doi.org/10.1002/bip.1980.360190603
  23. Ponnuswamy, P.K., Prabhakaran, M., and Manavalan, P. (1980). Hydrophobic packing and spatial arrangement of amino acid residues in globular proteins. Biochim. Biophys. Acta 623, 301-316 https://doi.org/10.1016/0005-2795(80)90258-5
  24. Potts, J.T. (2005). Parathyroid hormone: past and present. J. Endocrinol. 187, 311-325 https://doi.org/10.1677/joe.1.06057
  25. Prabhakaran, M., and Ponnuswamy, P.K. (1982). Shape and surface features of globular proteins. Macromolecules 15, 314-320 https://doi.org/10.1021/ma00230a022
  26. Rackovsky, S., and Scheraga, H.A. (1977). Hydrophobicity, hydrophilicity, and the radial and orientational distributions of residues in native proteins. Proc. Natl. Acad. Sci. USA 74, 5248-5251 https://doi.org/10.1073/pnas.74.12.5248
  27. Richardson, J.S., and Richardson, D.C. (1988). Amino acid preferences for specific locations at the ends of alpha helices. Science 240, 1648-1652 https://doi.org/10.1126/science.3381086
  28. Rolz, C., Pellegrini, M., and Mierke, D.F. (1999). Molecular characterization of the receptor-ligand complex for parathyroid hormone. Biochemistry 38, 6397-6405 https://doi.org/10.1021/bi9829276
  29. Sali, A., and Blundell, T.L. (1993). Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779-815 https://doi.org/10.1006/jmbi.1993.1626
  30. Sarda, D., Chua, G.H., Li, K.B., and Krishnan, A. (2005). pSLIP: SVM based protein subcellular localization prediction using multiple physicochemical properties. BMC Bioinformatics 6, 152 https://doi.org/10.1186/1471-2105-6-152
  31. Scholkopf, B., and Smola, A.J. (2002). Learning with Kernels (Cambridge: The MIT Press)
  32. Shimizu, M., Potts, J.T., Jr., and Gardella, T.J. (2000). Minimiz. of parathyroid hormone. Novel amino-terminal parathyroid hormone fragments with enhanced potency in activating the type-1 parathyroid hormone receptor. J. Biol. Chem. 275, 21836-21843 https://doi.org/10.1074/jbc.M909861199
  33. Shimizu, M., Carter, P.H., Khatri, A., Potts, J.T., Jr., and Gardella, T.J. (2001). Enhanced activity in parathyroid hormone-(1-14) and -(1-11): novel peptides for probing ligand-receptor interactions. Endocrinology 142, 3068-3074 https://doi.org/10.1210/en.142.7.3068
  34. Supper, J. (2005). Predicting MHC class I binding peptides based on amino acid properties using decision trees and support vector machines (Tubingen: Department for Simulation of Biological Systems, University of Tubingen)
  35. Tanaka, S., and Scheraga, H.A. (1977). Statistical mechanical treatment of protein conformation. 5. A multistate model for specific-sequence copolymers of amino acids. Macromolecules 10, 9-20 https://doi.org/10.1021/ma60055a002
  36. Toschantaridis, I., Hofmann, T., Joachims, T., and Altun, Y. (2004). Support vector machine learning for interdependent and structured output spaces. (Banff, Canada: $21^{st}$ International Conference on Machine Learning)
  37. Tsomaia, N., Pellegrini, M., Hyde, K., Gardella, T.J., and Mierke, D.F. (2004). Toward parathyroid hormone minimization: conformational studies of cyclic PTH(1-14) analogues. Biochemistry 43, 690-699 https://doi.org/10.1021/bi035703i
  38. Vapnik, V.N. (1995). The Natural of Statistical Learning Theory (New York: Springer Verlag)
  39. Wilce, M.C., Aguilar, M.I., and Hearn, M.T. (1995). Physicochemical basis of amino acid hydrophobicity scales: evaluation of four new scales of amino acid hydrophobicity coefficient derived from RP-HPLC of peptides. Anal. Chem. 67, 1210-1219 https://doi.org/10.1021/ac00103a012

피인용 문헌

  1. Risk-Predicting Model for Incident of Essential Hypertension Based on Environmental and Genetic Factors with Support Vector Machine vol.10, pp.1, 2009, https://doi.org/10.1007/s12539-017-0271-2