사용후 가솔린 자동차 삼원촉매의 재제조 효과 고찰

A Study on the Remanufacturing Effect of Aged Three-Way Catalysts

  • 곽승민 (한서대학교 화학공학과) ;
  • 임종선 (한서대학교 촉매공정기술연구원) ;
  • 김태원 (한서대학교 촉매공정기술연구원) ;
  • 박해경 (한서대학교 촉매공정기술연구원)
  • Kwak, Seung-Min (Department of chemical Engineering, Hanseo University) ;
  • Lim, Jong-Sun (Research Institute of Catalyst Technology, Hanseo University) ;
  • Kim, Tae-Won (Research Institute of Catalyst Technology, Hanseo University) ;
  • Park, Hae-Kyoung (Research Institute of Catalyst Technology, Hanseo University)
  • 투고 : 2009.05.25
  • 심사 : 2009.06.24
  • 발행 : 2009.08.10

초록

가솔린 자동차 배출가스에 장기간 노출되어 활성이 저하된 폐 삼원촉매를 대상으로 재제조를 수행하였다. 재제조된 삼원촉매, 자동차 배출가스에 노출되지 않은 신촉매와 폐 삼원촉매에 대해 촉매의 물성분석과 CO, THC 및 NOx에 대한 전환활성을 측정하여 비교 분석하였다. 폐 삼원촉매의 재제조는 증류수 및 산성용액을 이용하여 초음파 세정하는 것과 세정된 촉매에 촉매의 활성성분인 Pt, Pd 및 Rh를 재함침하는 방법으로 수행하였다. 폐 삼원촉매를 재제조하는 과정에서 촉매표면에 축적되었던 각종 불순성분들이 대부분 제거 되었으나 촉매활성 성분인 Pt나 Pd 또한 함께 제거되는 것으로 판단되었다. 촉매활성 성분을 함침하여 폐 삼원촉매를 재제조 할 경우 재제조된 촉매의 활성은 신촉매의 활성보다 같거나 우수한 것으로 나타났다.

Deactivated three-way catalysts which had been exposed to gasoline engine exhaust for a long time were remanufactured by ultra sonic cleaning with distilled water, sulfuric acid solution and impregnation with precious metals (Pt, Pd, Rh). The catalytic properties as well as conversion reactivity of CO, THC and NOx about fresh, aged and remanufactured catalysts were examined. Most of the pollutants deposited on the aged three-way catalysts were removed in the remanufacturing process of those catalysts. At the same time a little amount of precious metals like Pt and Pd were removed in the remanufacturing process. Under the experimental condition used in this study, in the case of the remanufactured catalysts with impregnation of precious metals, the catalytic activities were recovered to almost the same level, or higher level of that of the fresh catalyst.

키워드

과제정보

연구 과제 주관 기관 : 한서대학교

참고문헌

  1. B. H. Jang, C. H. Kim, Y. S. Oh, and H. E. Yie, HWAHAK KONGHAK, 39, 131 (2001)
  2. F. G. Dwyer, Catalysis Reviews, Marcel Dekker, New York, 261 (1972)
  3. B. H. Engeler, E. Koberstein, and H. Volker, Three-way Catalyst Performance Using Minimized Rhodium, SAE872097 (1987)
  4. Z. Hu, F. M. Allen, C. Z. Wan, R. M. Heck, J. J. Steger, R. E. Lakis, and C. E. Lynan, J. Catal, 174, 13 (1998) https://doi.org/10.1006/jcat.1997.1954
  5. R. M. Heck, R. J. Farrauto, and S. T. Gulati, Catalytic Air Pollution Control, Engelhard Corp, 73 (1995)
  6. B. H. Engler, G. T. Garr, and E. S. Lox, Johnson Matthey Automotive Catalyst Development to Meet Future Emission Standard, Dagussa AG, Ordeg Corp (1991)
  7. J. A. Moulijin, A. E. van Diepen, and F. Kapteijin, Appl. Catal. A; General, 212, 3 (2001) https://doi.org/10.1016/S0926-860X(00)00842-5
  8. C. H. Bartholomew, Appl. Catal. A; General, 212, 17 (2001) https://doi.org/10.1016/S0926-860X(00)00843-7
  9. K. L. Mowery and M. S. Graboski, T. R. Ohno, and R. L. McCormick, Appl. Catal. B; Environmental, 21, 157 (1999) https://doi.org/10.1016/S0926-3373(99)00017-X
  10. A. M. Arias, M. F. Garcia, A. B. Hungria, and A. I. Juez, J. Catal., 204, 238 (2001) https://doi.org/10.1006/jcat.2001.3379
  11. B. J. Cooper, W. D. J. Evans, and B. Harrison, Catalysis and Automotive Pollution Control, Elsevier, New York, 117 (1987)
  12. J. E. Kubsh, J. S. Rieck, and N. D. Spencer, Cerium Oxide Stabilization: Physical Property and Three-way Activity Consideration, Catalysis and Automotive Pollution Control Ⅱ, Elsevier, Amsterdam, 125 (1991)
  13. G. M. Fernandez and A. A. Martinez, Int. J. Mol. Sci., 2, 251 (2001) https://doi.org/10.3390/i2050251
  14. D. E. Angove and N. W. Cant, Appl. Catal. A; General, 194, 27 (2000) https://doi.org/10.1016/S0926-860X(99)00350-6
  15. B. S. Shin, S. S. Kim, G. W. Lee, M. G. Jung, J. H. Bae, and S. J. Choung, J. KOSAE, 15, 667 (1999)