Synthesis and Characteristics of 2,6-disubstituted Pyrylium Fluoroborates

2,6-Disubstituted Pyrylium Fluoroborates 화합물의 합성과 특성

  • Cho, Sung-Il (Department of Chemical Engineering, University of Seoul)
  • 조성일 (서울시립대학교 화학공학과)
  • Received : 2008.12.11
  • Accepted : 2009.03.16
  • Published : 2009.06.10

Abstract

Pyrylium fluoroborates undergo a wide range of synthetically useful reactions because of the positive charge. And the electron accepting nature has resulted in their widespread use as sensitizers for photo-induced electron transfer (PET) reactions. In this experiment, 2,6-disubstituted pyrylium fluoroborates are synthesized from the reaction between $3^{\prime}$-chloroacetophenone and excess orthoformate in an acidic medium (acetic anhydride/acid). Synthesized products are confirmed by $^1H-NMR$, FT-IR and TOF Mass spectroscopies. Also, photo-properties are analyzed with an UV-Vis spectrophotometer.

Pyrylium염 화합물은 양전하를 띄고 있어 유용한 합성반응에 널리 이용되고 있다. 또한 전자를 받아들이는 특성을 갖고 있어 광유도전자전이(PET) 반응의 감광제 등에 응용되고 있다. 우리는 본 연구에서 몇몇 2,6-disubstituted pyrylium fluoroborate 염 화합물을 산성 매체(acetic anhydride/acid) 하에서 합성하였다. 합성한 화합물을 $^{1}H-NMR$, FT-IR과 TOF Mass로 그 구조를 확인하였다. 또한, 그 광특성을 UV-Vis를 통해 분석하였다.

Keywords

Acknowledgement

Supported by : 서울시립대학교

References

  1. G. A. Reynolds, C. H. Chen, and J. A. Van Allan, J. Org. Chem., 44, 4456 (1979) https://doi.org/10.1021/jo01338a048
  2. C. H. Chen and G. A. Reynolds, J. Org. Chem., 45, 2453 (1980) https://doi.org/10.1021/jo01300a038
  3. G. A. Reynolds and C. H. Chen, J. Org. Chem., 45, 2458 (1980) https://doi.org/10.1021/jo01300a039
  4. C. H. Chen, J. J. Doney, and G. A. Reynolds, J. Org. Chem., 47, 680 (1982) https://doi.org/10.1021/jo00343a015
  5. G. Doddi and G. Ercolani, Synthesis, 789 (1985)
  6. A. T. Balaban, In Encyclopaedia of Reagents for Organic Synthesis; L. A. Paquette, Ed.; Wiley: New York; 8, 5407 (1995)
  7. N. Manoj, G. Ajayakumar, K. R. Gopidas, and C. H. Suresh, J. Phys. Chem., 110, 11338 (2006) https://doi.org/10.1021/jp063867d
  8. M. Alvaro, C. Aprile, M. Benitez, J. L. Bourdelande, H. Garcia, and J. R. Herance, Chem. Phys. Lett., 414, 66 (2005) https://doi.org/10.1016/j.cplett.2005.07.111
  9. G. Purvinis, P. S. Priambodo, M. Pomerantz, M. Zhou, T. A. Mal-donado, and R. Magnusson, Opt. Lett., 29, 1108 (2004) https://doi.org/10.1364/OL.29.001108
  10. I. Polysoz, G. Tsigaridas, M. Fakis, V. Giannetas, P. Persephonis, and J. Mikroyannidis, Chem. Phys. Lett., 369, 264 (2003) https://doi.org/10.1016/S0009-2614(02)01969-3
  11. Y.-F. Zhou and S.-Y. Feng, Chem. Phys. Chem., 3, 969 (2002) https://doi.org/10.1002/1439-7641(20021115)3:11<969::AID-CPHC969>3.0.CO;2-2
  12. M. Fakis, G. Tsigaridas, I. Polyzos, V. Giannetas, P. Persephonis, and I. Spiliopoulos, Mikroyannidis, Chem. Phys. Lett., 342, 155 (2001) https://doi.org/10.1016/S0009-2614(01)00551-6
  13. M. R. Detty and P. B. Merkel, J. Am. Chem. Soc., 112, 3845 (1990) https://doi.org/10.1021/ja00166a019
  14. D. Doddi and G. Ercolai, J. Chem. Soc. Perkin Trans. Ⅱ, 271 (1986)
  15. M. Christian, W. Dorothee, J. M. W. Jarno, A. P. Evgeny, H. Sandra, L. Martin, L. S. Anthony, C. J. M. Stefan, A. J. J. Rene, A. S. Rutger, and V. Dieger, Chem. Eur. J., 13, 4548 (2007) https://doi.org/10.1002/chem.200601650