A Study Based on Molecular Orbital Theory of Polymerization of Oxetane High Explosives

옥세탄 고폭 화약류의 중합반응에 관한 분자 궤도론적 연구

  • Received : 2008.12.16
  • Accepted : 2009.02.18
  • Published : 2009.04.10

Abstract

Monomers of oxetane high explosives were theoretically examined in terms of reactivity, reaction mechanism and process of polymerization substituted by azido $(-CH_2N_3)$, nitrato $(-CH_2ONO_2)$ and hydrazino $(-CH_2N_2H_3)$ which belong to the 5th class hazardous materials and have explosiveness under acid catalyst using MINDO/3, MNDO, and AMI methods for formal charge, heat of formation, and energy level. Nucleophilicity and base of oxetane high explosives could be explained by negative charge size of oxetane oxygen atom and reactivity of oxetane in the growth stage of polymerization under acid catalyzer could be expected to be governed by positive charge size of axial carbon atom and low LUMO energy of electrophile. It could be estimated that carbenium ion was more beneficial in the conversion process of oxetane high explosives than that of stabilization energy (13.90~31.02 kcal/mole) of oxonium ion. In addition, concentration of oxonium ion and carbenium ion in equilibrium state influenced mechanism and it was also estimated that $S_N1$ mechanism reacts faster than that of $S_N2$ in prepolymer growth stage considering quick equilibrium based on form and calculation of polymerization under acid catalyzer.

제5류 위험물에 속하며 폭발성기를 가진 azido기$(-CH_2N_3)$, nitrato기$(-CH_2ONO_2)$ 그리고 hydrazino기$(-CH_2N_2H_3)$로 치환된 옥세탄 고폭 화약류의 단량체들을 산 촉매하의 중합반응에 관하여 반응성, 반응메카니즘, 반응과정에 대하여 알아보고자 형식전하, 생성열, 에너지 준위를 반경험적인 MINDO/3, MNDO, AM1 방법 등을 사용하여 이론적으로 고찰하였다. 옥세탄 고폭 화약류의 친핵성 및 염기성은 옥세탄 산소원자의 음전하크기로 설명할 수 있고, 산 촉매하의 중합반응은 성장단계에서 옥세탄의 반응성은 중심 탄소원자의 양전하크기와 친전자체의 낮은 LUMO 에너지에 좌우됨을 알 수 있었다. 옥세탄 고폭 화약류의 전환되는 과정은 oxonium 이온과 carbenium이온의 안정화 에너지(13.90~31.02 Kcal/mole)를 비교하여 보면 carbenium 이온이 더 유리함을 예측 할 수 있었다. 또한, 평형상태에서 oxonium 이온과 carbenium 이온의 농도가 반응 메카니즘을 좌우하며, 산 촉매하의 중합반응 형태와 계산을 기초로 하여 빠른 평형을 예상하여 볼 때 선폴리머(prepolymer) 성장단계에서 $S_N1$ 메카니즘이 $S_N2$ 메카니즘보다 빠르게 반응 할 것으로 예측되었다.

Keywords

References

  1. E. J. Corey and N. Raju, Tetrahedron Letters, 24, 5571 (1983) https://doi.org/10.1016/S0040-4039(00)94143-1
  2. B. Xu, C. P. Lilly, and J. C. W. Chien, Macromolecules., 20, 1445 (1987) https://doi.org/10.1021/ma00173a001
  3. R. L. Willer and R. S. Day, Reprint 258 (1989)
  4. G. E. Manser, R. W. Fletch, and G. C. Shaw, Report NR 84589, Office of Naval Research (1984)
  5. D. Cremer and E. Eraka, J. Am. Chem. Soc., 107, 3800 (1985) https://doi.org/10.1021/ja00299a009
  6. S. Penczek, P. Kubisa, and R. Szymanski, Makromol. Chem., Macromol, Symp., 3, 203 (1986) https://doi.org/10.1002/masy.19860030116
  7. J. C. W. Chien, Y. G. Cheun, and C. P. Lilya, Marcromolecules, 3, 870 (1988)
  8. E. L Eliel and K. M. Pietrusiewicz, Top Carbon-13 NMR spectroscopy, 3, 172, New York (1979)
  9. Y. G. Cheun, J. Kor. Chem. Soc., 35, 461 (1991)
  10. G. E. Manser, Technology of Polymer Compounds and Energetic Materials, Mcgraw-Hill Book Company, 50 (1990)
  11. M. J. S. Dewar, E. G. Healy, and J. J. P. Stewart, QCPE, Program 506, Version 2.10 was used in this work
  12. M. J. S. Dewar, E. G. Zoebisch, and J. J. P. Stewart, J. Am. Chem. Soc., 107, 3902 (1985) https://doi.org/10.1021/ja00299a024
  13. I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley Interscience, New York (2006)
  14. G. Klopman, J. Am. Chem. Soc., 90, 225 (1986)
  15. C. Liang and L. C. Allen, J. Am. Chem. Soc., 113, 1878 (1991) https://doi.org/10.1021/ja00006a002