과제정보
연구 과제 주관 기관 : National Institutes of Health, NIH NRSA
참고문헌
-
Abdollahi, A., Hahnfeldt, P., Maercker, C., Gr
$\"{o}$ ne, H.-J., Debus, J., Ansorge, W., Folkman, J., Hlatky, L., and Huber, P.E. (2004). Endostatin's antioangiogenic signaling network. Mol. Cell 13, 649-663 https://doi.org/10.1016/S1097-2765(04)00102-9 - Adatia, R., Albini, A., Carlone, S., Giunciuglio, D., Benelli, R., Santi,L., and Noonan, D.M. (1998). Suppression of invasive behavior of melanoma cells by stable expression of anti-sense perlecan cDNA. Ann. Oncol. 8, 1257-1261
- Adkins, J.N., Varnum, S.M., Auberry, K.J., Moore, R.J., Angell, N.H., Smith, R.D., Springer, D.L., and Pounds, J.G. (2002). Toward a human blood serum proteome. Analysis by multidimensional separation coupled with mass spectrometry. Mol. Cell. Proteom.1, 947-955 https://doi.org/10.1074/mcp.M200066-MCP200
- Arikawa-Hirasawa, E., Watanabe, E., Takami, H., Hassell, J.R., and Yamada, Y. (1999). Perlecan is essential for cartilage and cephalic development. Nature Genet. 23, 354-358 https://doi.org/10.1038/15537
- Aviezer, D., Hecht, D., Safran, M., Eisinger, M., David, G., and Yayon, A. (1994). Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis,and angiogenesis. Cell 79, 1005-1013 https://doi.org/10.1016/0092-8674(94)90031-0
- Aviezer, D., Iozzo, R.V., Noonan, D.M., and Yayon, A. (1997). Suppression of autocrine and paracrine functions of basic fibroblast growth factor by stable expression of perlecan antisense cDNA. Mol. Cell. Biol. 17, 1938-1946 https://doi.org/10.1128/MCB.17.4.1938
- Baerwald-De La Torre, K., Winzen, U., Halfter, W., and Bixby, J.L. (2004). Glycosaminoglycan-dependent and -independent inhibition of neurite outgrowth by agrin. J. Neurochem. 90, 50-61 https://doi.org/10.1111/j.1471-4159.2004.02454.x
-
Batmunkh, E., T
$\'{a}$ trai, P., Szab$\"{o}$ , E., L$\"{o}$ di, C., Holczbauer, A., P$\'{a}$ ska, C., Kupcsulik, P., Kiss, A., Schaff, Z., and Kovalszky, I. (2007). Comparison of the expression of agrin, a basement membrane heparan sulfate proteoglycan, in cholangiocarcinoma and hepatocellular carcinoma. Hum. Pathol. 38, 1508-1515 https://doi.org/10.1016/j.humpath.2007.02.017 - Bezakova, G., and Ruegg, M.A. (2003). New insights into the roles of agrin. Nature Rev. Mol. Cell Biol. 4, 295-308 https://doi.org/10.1038/nrm1074
- Bix, G., and Iozzo, R.V. (2005). Matrix revolutions: 'tails' of basement-membrane components with angiostatic functions. Trends Cell Biol. 15, 52-60 https://doi.org/10.1016/j.tcb.2004.11.008
- Bix, G., and Iozzo, R.V. (2008). Novel interactions of perlecan: Unraveling perlecan's role in angiogenesis. Microsc. Res. 71, 339-348 https://doi.org/10.1002/jemt.20562
-
Bix, G., Fu, J., Gonzalez, E., Macro, L., Barker, A., Campbell, S., Zutter, M.M., Santoro, S.A., Kim, J.K., H
$\"{o}$ $\"{o}$ k, M., et al. (2004). Endorepellin causes endothelial cell disassembly of actin cytoskeleton and focal adhesions through the$\alpha$ 2$\beta$ 1 integrin. J. Cell Biol. 166, 97-109 https://doi.org/10.1083/jcb.200401150 - Bix, G., Castello, R., Burrows, M., Zoeller, J.J., Weech, M., Iozzo, R.A., Cardi, C., Thakur, M.T., Barker, C.A., Camphausen, K.C., et al. (2006). Endorepellin in vivo: targeting the tumor vasculature and retarding cancer growth and metabolism. J. Natl. Cancer Inst. 98, 1634-1646 https://doi.org/10.1093/jnci/djj441
-
Bix, G., Iozzo, R.A., Woodall, B., Burrows, M., McQuillan, A., Campbell, S., Fields, G.B., and Iozzo, R.V. (2007). Endorepellin, the C-terminal angiostatic module of perlecan, enhances collagen-platelet responses via the
$\alpha$ 2$\beta$ 1 integrin receptor. Blood 109,3745-3748 https://doi.org/10.1182/blood-2006-08-039925 - Burgess, R.W., Dickman, D.K., Nunez, L., Glass, D.J., and Sanes, J.R. (2002). Mapping sites responsible for interactions of agrin with neurons. J. Neurochem. 83, 271-284 https://doi.org/10.1046/j.1471-4159.2002.01102.x
- Cailhier, J.-F., Sirois, I., Raymond, M.-A., Lepage, S., Laplante, P., Brassard, N., Prat, A., Iozzo, R.V., Pshezhetsky, A.V., and Hebert, M.-J. (2008). Caspase-3 activation triggers extracellular release of cathepsin L and endorepellin proteolysis. J. Biol. Chem. 283, 27220-27229 https://doi.org/10.1074/jbc.M801164200
- Chang, J.W., Kang, U.-B., Kim, D.H., Yi, J.K., Lee, J.W., Noh, D.-Y., Lee, C., and Yu, M.-H. (2008). Identification of circulating endorepellin LG3 fragment: Potential use as a serological biomarker for breast cancer. Proteomics Clin. Appl. 2, 23-32 https://doi.org/10.1002/prca.200780049
- Clamp, A.R., and Jayson, G.C. (2005). The clinical potential of antiangiogenic fragments of extracellular matrix proteins. Br. J.Cancer 93, 967-972 https://doi.org/10.1038/sj.bjc.6602820
- Cohen, I.R., Murdoch, A.D., Naso, M.F., Marchetti, D., Berd, D., and Iozzo, R.V. (1994). Abnormal expression of perlecan proteoglycan in metastatic melanomas. Cancer Res. 54, 5771-5774
- Costell, M., Gustafsson, E., Aszodi, A., Morgelin, M., Bloch, W., Hunziker, E., Addicks, K., Timpl, R., and Fassler, R. (1999). Perlecan maintains the integrity of cartilage and some basement membranes. J. Cell Biol. 147, 1109-1122 https://doi.org/10.1083/jcb.147.5.1109
- Costell, M., Carmona, R., Gustafsson, E., Gonzalez-Iriarte, M., Fassler, R., and Munoz-Chapuli, R. (2002). Hyperplastic conotruncal endo-cardial cushions and transposition of great arteries in perlecan-null mice. Circ. Res. 91, 158-164 https://doi.org/10.1161/01.RES.0000026056.81424.DA
- Denzer, A.J., Sculthess, T., Fauser, C., Schumacher, B., Kammerer, R.A., Engel, J., and Ruegg, M.A. (1998). Electron microscopic structure of agrin and mapping of its binding site in laminin-1. EMBO J. 17, 335-343 https://doi.org/10.1093/emboj/17.2.335
- Dhanabal, M., Ramchandran, R., Waterman, M.J., Lu, H., Knebelmann, B., Segal, M., and Sukhatme, V.P. (1999). Endostatin induces endothelial cell apoptosis. J. Biol. Chem. 274, 11721-11726 https://doi.org/10.1074/jbc.274.17.11721
- Donahue, J.E., Berzin, T.M., Rafii, M.S., Glass, D.J., Yancopoulos, G.D., Fallon, J.R., and Stopa, E.G. (1999). Agrin in Alzheimer's disease: Altered solubility and abnormal distribution within microvasculature and brain parenchyma. Proc. Natl. Acad. Sci.USA 96, 6468-6472 https://doi.org/10.1073/pnas.96.11.6468
- Dong, S., Cole, G.J., and Halfter, W. (2003). Expression of collagen XVIII and localization of its glycosaminoglycan attachment sites. J. Biol. Chem. 278, 1700-1707 https://doi.org/10.1074/jbc.M209276200
- Elamaa, H., Snellman, A., Rehn, M., Autio-Harmainen, H., and Pihlajaniemi, T. (2003). Characterization of the human type XVIII collagen gene and proteolytic processing and tissue location of the variant containing a frizzled motif. Matrix Biol. 22, 427-442 https://doi.org/10.1016/S0945-053X(03)00073-8
- Farach-Carson, M.C., and Carson, D.D. (2007). Perlecan - a multifunctional extracellular proteoglycan scaffold. Glycobiology 17, 897-905 https://doi.org/10.1093/glycob/cwm043
- Ferreras, M., Felbor, U., Lenhard, T., Olsen, B.R., and Delaisse, J. (2000). Generation and degradation of human endostatin proteins by various proteinases. FEBS Lett. 486, 247-251 https://doi.org/10.1016/S0014-5793(00)02249-3
- Fukai, N., Eklund, L., Marneros, A.G., Oh, S.P., Keene, D.R., Tamarkin, L., Niemela, M., Ilves, M., Li, E., Pihlajaniemi, T., et al. (2002). Lack of collagen XVIII/endostatin results in eye abnormalities. EMBO J. 21, 1535-1544 https://doi.org/10.1093/emboj/21.7.1535
- Fuki, I., Iozzo, R.V., and Williams, K.J. (2000). Perlecan heparan sulfate proteoglycan. A novel receptor that mediates a distinct pathway for ligand catabolism. J. Biol. Chem. 275, 25742-25750 https://doi.org/10.1074/jbc.M909173199
- Gautam, M., Noakes, P.G., Moscoso, L., Rupp, F., Scheller, R.H., Merlie, J.P., and Sanes, J.R. (1996). Defective neuromuscular synaptogenesis in agrin-deficient mice. Cell 85, 525-535 https://doi.org/10.1016/S0092-8674(00)81253-2
- Gesemann, M., Brancaccio, A., Schumacher, B., and Ruegg, M.A. (1998). Agrin is a high-affinity binding protein of dystroglycan in non-muscle tissue. J. Biol. Chem. 273, 600-605 https://doi.org/10.1074/jbc.273.1.600
- Ghiselli, G., Eichstetter, I., and Iozzo, R.V. (2001). A role for the perlecan protein core in the activation of the keratinocyte growth factor receptor. Biochem. J. 359, 153-163 https://doi.org/10.1042/0264-6021:3590153
- Gianazza, E., Wait, R., Begum,S., Eberini, I., Campagnoli, M., Labo, S., and Galliano, M. (2007). Mapping the 5-50-kDa fraction of human amniotic fluid proteins by 2-DE and ESI-MS. Proteomics Clin. Appl. 1, 167-175 https://doi.org/10.1002/prca.200600543
- Gonzalez, E.M., Reed, C.C., Bix, G., Fu, J., Zhang, Y., Gopalakrishnan, B., Greenspan, D.S., and Iozzo, R.V. (2005). BMP-1/Tolloid-like metalloproteases process endorepellin, the angiostatic C-terminal fragment of perlecan. J. Biol. Chem. 280, 7080-7087 https://doi.org/10.1074/jbc.M409841200
-
Gonz
$\'{a}$ lez-Iriarte, M., Carmona, R., Perez-Pomares, J.M., Macías, D., Costell, M., and Munoz-Chapuli, R. (2003). Development of the coronary arteries in a murine model of transposition of great arteries. J. Mol. Cell. Cardio. 35, 795-802 https://doi.org/10.1016/S0022-2828(03)00134-2 -
Grenache, D.G., Zhang, Z., Wells, L.E., Santoro, S.A., Davidson, J.M., and Zutter, M.M. (2006). Wound healing in the
$\alpha$ 2$\beta$ 1 integrin-deficient mouse: altered keratinocyte biology and dysregulated matrix metalloproteinase expression. J. Invest. Dermatol. 127, 455-466 https://doi.org/10.1038/sj.jid.5700611 - Groffen, A.J.A., Buskens, C.A.F., van Kuppevelt, T.H., Veerkamp, J.H., Monnens, L.A.H., and van den Heuvel, L.P.W.J. (1998). Primary structure and high expression of human agrin in basement membranes of adult lung and kidney. Eur. J. Biochem. 254, 123-128 https://doi.org/10.1046/j.1432-1327.1998.2540123.x
- Gronborg, M., Kristiansen, T.Z., Iwahori, A., Chang, R., Reddy, R., Sato, N., Molina, H., Jensen, O.N., Hruban, R.H., Goggins, M.G., et al. (2006). Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach. Mol. Cell. Proteom. 5, 157-171 https://doi.org/10.1074/mcp.M500178-MCP200
- Halfter, W., Dong, S., Schurer, B., and Cole, G.J. (1998). Collagen XVIII is a basement membrane heparan sulfate proteoglycan. J. Biol. Chem. 273, 25404-25412 https://doi.org/10.1074/jbc.273.39.25404
- Handler, M., Yurchenco, P.D., and Iozzo, R.V. (1997). Developmental expression of perlecan during murine embryogenesis. Dev. Dyn. 210, 130-145 https://doi.org/10.1002/(SICI)1097-0177(199710)210:2<130::AID-AJA6>3.0.CO;2-H
- Hassell, J.R., Yamada, Y., and Arikawa-Hirasawa, E. (2003). Role of perlecan in skeletal development and diseases. Glycoconj. J. 19, 263-267 https://doi.org/10.1023/A:1025340215261
-
Hilgenberg, L.G.W., Su, H., Gu, H., O'Dowd, D.K., and Smith, M.A. (2006).
$\alpha$ 3$Na^{+}$ /$K^{+}$ -ATPase is a neuronal receptor for agrin. Cell 125, 359-369 https://doi.org/10.1016/j.cell.2006.01.052 - Hurskainen, M., Eklund, L., Hagg, P.O., Fruttiger, M., Sormunen, R., IIves, M., and Pihlajaniemi, T. (2005). Abnormal maturation of the retinal vasculature in type XVIII collagen/endostatin deficient mice and changes in retinal glial cells due to lack of collagen types XV and XVIII. FASEB J. 19, 1564-1666 https://doi.org/10.1096/fj.04-3101fje
- Iozzo, R.V. (1994). Perlecan: a gem of a proteoglycan. Matrix Biol. 14, 203-208 https://doi.org/10.1016/0945-053X(94)90183-X
- Iozzo, R.V. (1998). Matrix proteoglycans: from molecular design to cellular function. Annu. Rev. Biochem. 67, 609-652 https://doi.org/10.1146/annurev.biochem.67.1.609
- Iozzo, R.V. (2005). Basement membrane proteoglycans: from cellar to ceiling. Nature Rev. Mol. Cell Biol. 6, 646-656 https://doi.org/10.1038/nrm1702
- Iozzo, R.V., and Murdoch, A.D. (1996). Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J. 10, 598-614 https://doi.org/10.1096/fasebj.10.5.8621059
- Iozzo, R.V., and San Antonio, J.D. (2001). Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J. Clin. Invest. 108, 349-355 https://doi.org/10.1172/JCI13738
- Iozzo, R.V., Cohen, I.R., Grassel, S., and Murdoch, A.D. (1994). The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem. J. 302, 625-639 https://doi.org/10.1042/bj3020625
-
Iozzo, R.V., Pillarisetti, J., Sharma, B., Murdoch, A.D., Danielson, K.G., Uitto, J., and Mauviel, A. (1997). Structural and functional characterization of the human perlecan gene promoter. Transcriptional activation by transforming growth factor-
$\beta$ via a nuclear factor 1-binding element. J. Biol. Chem. 272, 5219-5228 https://doi.org/10.1074/jbc.272.8.5219 - Kadenhe-Chiweshe, A., Papa, J., McCrudden, K.W., Frischer, J., Bae, J.-O., Huang, J., Fisher, J., Lefkowitch, J.H., Feirt, N., Rudge, J., et al. (2008). Sustained VEGF blockade results in mi croenvironmental sequestration of VEGF by tumors and persistent VEGF receptor-2 activation. Mol. Cancer Res. 6, 1-9 https://doi.org/10.1158/1541-7786.MCR-07-0101
- Karumanchi, S.A., Jha, V., Ramchandran, R., Karihaloo, A., Tsiokas, L., Chan, B., Dhanabai, M., Hanai, J.-C., Venkataraman, G., Shriver, Z., et al. (2001). Cell surface glypicans are low-affinity endostatin receptors. Mol. Cell 7, 811-822 https://doi.org/10.1016/S1097-2765(01)00225-8
- Kim, Y.-M., Hwang, S., Kim, Y.-M., Pyun, B.-J., Kim, T.-Y., Lee, S.-T., Gho, Y.S., and Kwon, Y.-G. (2002). Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. J. Biol. Chem. 277, 27872-27879 https://doi.org/10.1074/jbc.M202771200
- Kim, N., Stiegler, A.L., Cameron, T.O., Hallock, P.T., Gomez, A.M.,Huang, J.H., Hubbard, S.R., Dustin, M.L., and Burden, S.J. (2008). Lrp4 is a receptor for agrin and forms a complex with MuSK. Cell 135, 334-342 https://doi.org/10.1016/j.cell.2008.10.002
- Klein, G., Conzelmann, S., Beck, S., Timpl, R., and Muller, C.A. (1995). Perlecan in human bone marrow: a growth-factor presenting, but anti-adhesive, extracellular matrix component for hematopoietic cells. Matrix Biol. 14, 457-465 https://doi.org/10.1016/0945-053X(95)90003-9
- Krishna, J., Shah, Z.A., Merchant, M., Klein, J.B., and Gozal, D. (2006). Urinary protein expression patterns in children with sleep-disordered breathing: preliminary findings. Sleep Med. 7, 221-227 https://doi.org/10.1016/j.sleep.2005.09.010
- Kuo, C.J., LaMontagne, K.R., Garcia-Cardena, G., Ackley, B.D., Kalman, D., Park, S., Christofferson, R., Kamihara, J., Ding,Y.-H., Lo, K.-M., et al. (2001). Oligomerization-dependent regulation of motility and morphogenesis by the collagen XVIII NC1/ endostatin domain. J. Cell Biol. 152, 1233-1246 https://doi.org/10.1083/jcb.152.6.1233
-
Laplante, P., Raymond, M.A., Gagnon, G., Vigneault, N., Sasseville, A.M., Langelier, Y., Bernard, M., Raymond, Y., and Heb
$\'{e}$ rt, M.-J. (2005). Novel fibrogenic pathways are activated in response to endothelial apoptosis: implications in the pathophysiology of systemic sclerosis. J. Immunol. 174, 5740-5749 https://doi.org/10.4049/jimmunol.174.9.5740 -
Laplante, P., Raymond, M.-A., Labelle, A., Abe, J.-I., Iozzo, R.V., and Hebert, M.-J. (2006). Perlecan proteolysis induces
$\alpha$ 2$\beta$ 1 integrin and src-family kinases dependent anti-apoptotic pathway in fibroblasts in the absence of focal adhesion kinase activation. J. Biol. Chem. 281, 30383-30392 https://doi.org/10.1074/jbc.M606412200 - Li, Q., and Olsen, B.R. (2004). Increased angiogenic response in aortic explants of collagen XVIII/endostatin-null mice. Am. J. Pathol. 165, 415-424 https://doi.org/10.1016/S0002-9440(10)63307-X
- Lin, W., Burgess, R.W., Dominguez, B., Pfaff, S.L., Sanes, J.R., and Lee, K.-F. (2001). Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410, 1057-1064 https://doi.org/10.1038/35074025
- Lin, S., Maj, M., Bezakova, G., Magyar, J.P., Brenner, H.R., and Ruegg, M.A. (2008). Muscle-wide secretion of a miniaturized form of neural agrin rescues focal neuromuscular innervation in agrin mutant mice. Proc. Natl. Acad. Sci. USA 105, 11406-11411 https://doi.org/10.1073/pnas.0801683105
- Marneros, A.G., and Olsen, B.R. (2005). Physiological role of collagen XVIII and endostatin. FASEB J. 19, 716-728 https://doi.org/10.1096/fj.04-2134rev
- Marneros, A.G., Keene, D.R., Hansen, U., Fukai, N., Moulton, K., Goletz, P.L., Moiseyev, G., Pawlyk, B.S., Halfter, W., Dong, S., et al. (2004). Collagen XVIII/endostatin is essential for vision and retinal pigment epithelial function. EMBO J. 23, 89-99 https://doi.org/10.1038/sj.emboj.7600014
- Marneros, A.G., She, H., Zambarakji, H., Hashizume, H., Connolly, E.J., Kim, I., Gragoudas, E.S., Miller, J.W., and Olsen, B.R. (2007). Endogenous endostatin inhibits choroidal neovascularization. FASEB J. 21, 3809-3818 https://doi.org/10.1096/fj.07-8422com
- Mathiak, M., Yenisey, C., Grant, D.S., Sharma, B., and Iozzo, R.V. (1997). A role for perlecan in the suppression of growth and invasion in fibrosarcoma cells. Cancer Res. 57, 2130-2136
- Matsumoto-Miyai, K., Sokolowska, E., Zurlinden, A., Gee, C.E., Luscher, D., Hettwer, S., Wolfel, J., Ladner, A.P., Ster, J., Gerber, U., et al. (2009). Coincident pre- and postsynaptic activation induces dendritic filopodia via neurotrypsin-dependent agrin cleavage. Cell 136, 1161-1171 https://doi.org/10.1016/j.cell.2009.02.034
- Menzel, O., Bekkeheien, R.C., Reymond, A., Fukai, N., Boye, E., Kosztolanyi, G., Aftimos, S., Deutsch, S., Scott, H.S., Olsen, B.R., et al. (2004). Knobloch syndrome: novel mutations in COL18A1, evidence for genetic heterogeneity, and a functionally impaired polymorphism in endostatin. Hum. Mutat. 23, 77-84 https://doi.org/10.1002/humu.10284
- Mongiat, M., Taylor, K., Otto, J., Aho, S., Uitto, J., Whitelock, J., and Iozzo, R.V. (2000). The protein core of the proteoglycan perlecan binds specifically to fibroblast growth factor-7. J. Biol. Chem. 275, 7095-7100 https://doi.org/10.1074/jbc.275.10.7095
- Mongiat, M., Otto, J., Oldershaw, R., Ferrer, F., Sato, J.D., and Iozzo, R.V. (2001). Fibroblast growth factor-binding protein is a novel partner for perlecan protein core. J. Biol. Chem. 276, 10263-10271 https://doi.org/10.1074/jbc.M011493200
- Mongiat, M., Sweeney, S., San Antonio, J.D., Fu, J., and Iozzo, R.V. (2003). Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecan. J. Biol. Chem. 278, 4238-4249 https://doi.org/10.1074/jbc.M210445200
- Moulton, K.S., Olsen, B.R., Sonn, S., Fukai, N., Zurakowski, D., and Zeng, X. (2004). Loss of collagen XVIII enhances neovascularization and vascular permeability in atherosclerosis. Circulation 110, 1330-1336 https://doi.org/10.1161/01.CIR.0000140720.79015.3C
- Nitkin, R.M., Smith, M.A., Magill, C., Fallon, J.R., Yao, Y.-M.M., Wallace, B.G., and McMahan, U.J. (1987). Identification of agrin, a synaptic organizing protein from Torpedo electric organ. J. Cell Biol. 105, 2471-2478 https://doi.org/10.1083/jcb.105.6.2471
- Nugent, M.A., and Iozzo, R.V. (2000). Fibroblast growth factor-2. Int. J. Biochem. Cell Biol. 32, 115-120 https://doi.org/10.1016/S1357-2725(99)00123-5
- Nugent, M.A., Nugent, H.M., Iozzo, R.V., Sanchack, K., and Edelman, E.R. (2000). Perlecan is required to inhibit thrombosis after deep vascular injury and contributes to endothelial cell-mediated inhibition of intimal hyperplasia. Proc. Natl. Acad. Sci. USA 97, 6722-6727 https://doi.org/10.1073/pnas.97.12.6722
- Nyberg, P., Xie, L., and Kalluri, R. (2005). Endogenous inhibitors of angiogenesis. Cancer Res. 65, 3967-3979 https://doi.org/10.1158/0008-5472.CAN-04-2427
- Oda, O., Shinzato, T., Ohbayashi, K., Takai, I., Kunimatsu, M., Maeda, K., and Yamanaka, N. (1996). Purification and characterization of perlecan fragment in urine of end-stage renal failure patients. Clin. Chim. Acta 255, 119-132 https://doi.org/10.1016/0009-8981(96)06395-4
- Oh, S.P., Kamagata, Y., Muragaki, Y., Timmons, S., Ooshima, A., and Olsen, B.R. (1994a). Isolation and sequencing of cDNAs for proteins with multiple domains of Gly-Xaa-Yaa repeats identify a distinct family of collagenous proteins. Proc. Natl. Acad. Sci. USA 91, 4229-4233 https://doi.org/10.1073/pnas.91.10.4229
-
Oh, S.P., Warman, M.L., Seldin, M.F., Cheng, S.-D., Knoll, J.H.M., Timmons, S., and Olsen, B.R. (1994b). Cloning of cDNA and genomic DNA encoding human type XVIII collagen and localization of the
$\alpha$ 1(XVIII) collagen gene to mouse chromosome 10 and human chromosome 21. Genomics 19, 494-499 https://doi.org/10.1006/geno.1994.1098 - O'Reilly, M.S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W.S., Flynn, E., Birkhead, J.R., Olsen, B.R., and Folkman, J. (1997). Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277-285 https://doi.org/10.1016/S0092-8674(00)81848-6
- O'Riordan, E., Orlova, T.N., Mendelev, N., Patschan, D., Kemp, R., Chander, P.N., Hu, R., Hao, G., Gross, S.S., Iozzo, R.V., et al. (2008). Urinary proteomic analysis of chronic renal allograft nephropathy. Proteomics Clin. Appl. 2, 1025-1035 https://doi.org/10.1002/prca.200780137
- Raymond, M.-A., Desormeaux, A., Laplante, P., Vigneault, N., Filep, J.G., Landry, K., Pshezhetsky, A.V., and Hebert, M.-J. (2004). Apoptosis of endothelial cells triggers a caspase-dependent anti-apoptotic paracrine loop active on vascular smooth muscle cells. FASEB J. 18, 705-707 https://doi.org/10.1096/fj.03-0573fje
-
Rehn, M., Hintikka, E., and Pihlajaniemi, T. (1994). Primary structure of the a1 chain of mouse type XVIII collagen, partial structure of the corresponding gene, and comparison of the
$\alpha$ 1(XVIII) chain with its homologue, the$\alpha$ 1 (XV) collagen chain. J. Biol. Chem. 269, 13929-13935 - Rehn, M., Veikkola, T., Kukk-Valdre, E., Nakamura, H., Ilmonen, M., Lombardo, C.R., Pihlajaniemi, T., Alitalo, K., and Vuori, K. (2001). Interaction of endostatin with integrins implicated in angiogenesis. Proc. Natl. Acad. Sci. USA 98, 1024-1029 https://doi.org/10.1073/pnas.031564998
- Reif, R., Sales, S., Hettwer, S., Dreier, B., Gisler, C., Wolfel, J., Luscher, D., Zurlinden, A., Stephan, A., Ahmed, S., et al. (2007). Specific cleavage of agrin by neurotrypsin, a synaptic protease linked to mental retardation. FASEB J. 21, 3468-3478 https://doi.org/10.1096/fj.07-8800com
- Reiland, J., Sanderson, R.D., Waguespack, M., Barker, S.A., Long, R., Carson, D.D., and Marchetti, D. (2004). Heparanase degrades syndecan-1 and perlecan heparan sulfate: functional implications for tumor cell invasion. J. Biol. Chem. 279, 8047-8055 https://doi.org/10.1074/jbc.M304872200
- Robinson, C.J., Mulloy, B., Gallagher, J.T., and Stringer, S.E. (2006). VEGF165-binding sites within heparan sulfate encompass two highly sulfated domains and can be liberated by K5 lyase. J. Biol. Chem. 281, 1731-1740 https://doi.org/10.1074/jbc.M510760200
- Rossi, M., Morita, H., Sormunen, R., Airenne, S., Kreivi, M., Wang, L., Fukai, N., Olsen, B.R., Tryggvason, K., and Soininen, R. (2003). Heparan sulfate chains of perlecan are indispensable in the lens capsule but not in the kidney. EMBO J. 22, 236-245 https://doi.org/10.1093/emboj/cdg019
- Saarela, J., Ylikarppa, R., Rehn, M., Purmonen, S., and Pihlajaniemi, T. (1998). Complete primary structure of two variant forms of human type XVIII collagen and tissue-specific differences in the expression of the corresponding transcripts. Matrix Biol. 16, 319-328 https://doi.org/10.1016/S0945-053X(98)90003-8
- Sasaki, T., Fukai, N., Mann, K., Gohring, W., Olsen, B.R., and Timpl, R. (1998). Structure, function and tissue forms of the C-terminal globular domain of collagen XVIII containing the angiogenesis inhibitor endostatin. EMBO J. 17, 4249-4256 https://doi.org/10.1093/emboj/17.15.4249
- Sauter, B.V., Martinet, O., Zhang, W.-J., Mandeli, J., and Woo, S.L.C. (2001). Adenovirus-mediated gene transfer of endostatin vivo results in high level of transgene expression and inhibition of tumor growth and metastasis. Proc. Natl. Acad. Sci. USA 97, 4802-4807 https://doi.org/10.1073/pnas.090065597
-
Savor
$\'{e} $ , C., Zhang, C., Muir, C., Liu, R., Wyrwa, J., Shu, J., Zhau, H.E., Chung, L.W., Carson, D.D., and Farach-Carson, M.C. (2005). Perlecan knockdown in metastatic prostate cancer cells reduces heparin-binding growth factor responses in vitro and tumor growth in vivo. Clin. Exp. Metastasis 22, 377-390 https://doi.org/10.1007/s10585-005-2339-3 - Scotton, P., Bleckmann, D., Stebler, M., Sciandra, F., Brancaccio, A., Meier, T., Stetefeld, J., and Ruegg, M.A. (2006). Activation of muscle-specific receptor tyrosine kinase and binding to dystroglycan are regulated by alternative mRNA splicing of agrin. J. Biol. Chem. 281, 36835-36845 https://doi.org/10.1074/jbc.M607887200
-
Senger, D.R., Perruzzi, C.A., Streit, M., Koteliansky, V.E., de Fougerolles, A.R., and Detmar, M. (2002). The
$\alpha$ 1$\beta$ 1 and$\alpha$ 2$\beta$ 1 integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis. Am. J. Pathol. 160, 195-204 https://doi.org/10.1016/S0002-9440(10)64363-5 - Seppinen, L., Sormunen, R., Soini, Y., Elamaa, H., Heljasvaara, R., and Pihlajaniemi, T. (2008). Lack of collagen XVIII accelerates cutaneous wound healing, while overexpression of its endostatin domain leads to delayed healing. Matrix Biol. 102, 535-546 https://doi.org/10.1016/j.matbio.2008.03.003
- Sharma, B., Handler, M., Eichstetter, I., Whitelock, J., Nugent, M.A., and Iozzo, R.V. (1998). Antisense targeting of perlecan blocks tumor growth and angiogenesis in vivo. J. Clin. Invest. 102, 1599-1608 https://doi.org/10.1172/JCI3793
- Shichiri, M., and Hirata, Y. (2001). Antiangiogenesis signals by endostatin. FASEB J. 15, 1044-1053 https://doi.org/10.1096/fj.99-1083com
-
Sudhakar, A., Sugimoto, H., Yang, C., Lively, J., Zeisberg, M., and Kalluri, R. (2003). Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by
$\alpha$ v$\beta$ 3 and$\alpha$ 5$\beta$ 1 integrins. Proc. Natl. Acad. Sci. USA 100, 4766-4771 https://doi.org/10.1073/pnas.0730882100 - Sund, M., Zeisberg, M., and Kalluri, R. (2005). Endogenous stimulators and inhibitors of angiogenesis in gastrointestinal cancers: basic science to clinical application. Gastroenterology 129, 2076-2091 https://doi.org/10.1053/j.gastro.2005.06.023
- Suzuki, O.T., Sertie, A.L., Der, K.V., Kok, F., Carpenter, M., Murray, J., Czeizel, A.E., Kliemann, S.E., Rosemberg, S., Monteiro, M., et al. (2002). Molecular analysis of collagen XVIII reveals novel mutations, presence of a third isoform, and possible genetic heterogeneity in Knobloch syndrome. Am. J. Hum. Genet. 71, 1320-1329 https://doi.org/10.1086/344695
-
Sweeney, S.M., DiLullo, G., Slater, S.J., Martinez, J., Iozzo, R.V., Lauer-Fields, J.L., Fields, G.B., and San Antonio, J.D. (2003). Angiogenesis in collagen I requires
$\alpha$ 2$\beta$ 1 ligation of a GFP$^{*}$ GER sequence and possible p38 MAPK activation and focal adhesion disassembly. J. Biol. Chem. 278, 30516-30524 https://doi.org/10.1074/jbc.M304237200 -
T
$\'{a}$ trai, P., Dudas, J., Batmunkh, E., M$\'{a}$ th$\'{e}$ , M., Zalatnai, A., Schaff, Z., Ramadori, G., and Kovalszky, I. (2006). Agrin, a novel basement membrane component in human rat and liver, accumulates in cirrhosis and hepatocellular carcinoma. Lab. Invest. 86, 1149-1160 - Thadikkaran, L., Crettaz, D., Siegenthaler, M.A., Gallot, D., Sapin, V., Iozzo, R.V., Queloz, P.A., Schneider, P., and Tissot, J.D. (2005). The role of proteomics in the assessment of premature rupture of fetal membranes. Clin. Chim. Acta 360, 27-36 https://doi.org/10.1016/j.cccn.2005.04.018
- Tran, P.-K., Tran-Lundmark, K., Soininen, R., Tryggvason, K., Thyberg, J., and Hedin, U. (2004). Increased intimal hyperplasia and smooth muscle cell proliferation in transgenic mice with heparan sulfate-deficient perlecan. Circ. Res. 94, 550-558 https://doi.org/10.1161/01.RES.0000117772.86853.34
- Tsangaris, G.T., Karamessinis, P., Kolialexi, A., Garbis, S.D., Antsaklis, A., Mavrou, A., and Fountoulakis, M. (2006). Proteomic analysis of amniotic fluid in pregnancies with Down syndrome. Proteomics 6, 4410-4419 https://doi.org/10.1002/pmic.200600085
- Utriainen, A., Sormunen, R., Kettunen, M., Carvalhaes, L.S., Sajanti, E., Eklund, L., Kauppinen, R., Kitten, G.T., and Pihlajaniemi, T. (2004). Structurally altered basement membranes and hydrocephalus in a type XVIII collagen deficient mouse line. Human Mol. Gen. 13, 2089-2099 https://doi.org/10.1093/hmg/ddh213
-
Verbeek, M.M., Otte-H
$\"{o}$ ller, I., van den Born, J., van den Heuvel, L.P.W.J., David, G., Wesseling, P., and de Waal, R.M. (1999). Agrin is a major heparan sulfate proteoglycan accumulating in Alzheimer's disease brain. Am. J. Pathol. 155, 2115-2125 https://doi.org/10.1016/S0002-9440(10)65529-0 -
Vuadens, F., Benay, C., Crettaz, D., Gallot, D., Sapin, V., Schneider, P., Binevenut, W.-V., L
$\'{e}$ mery, D., Quadroni, M., Dastugue, B., et al. (2003). Identification of biologic markers of the premature rupture of fetal membranes: proteomic approach. Proteomics 3, 1521-1525 https://doi.org/10.1002/pmic.200300455 -
Warth, A., Kr
$\"{o}$ ger, S., and Wolburg, H. (2004). Redistribution of aquaporin-4 in human glioblastoma correlates with loss of agrin immunoreactivity from brain capillary basal laminae. Acta Neuropathol. 107, 311-318 https://doi.org/10.1007/s00401-003-0812-0 - West, L., Govindraj, P., Koob, T.J., and Hassell, J.R. (2006). Changes in perlecan during chondrocyte differentiation in the fetal bovine rib growth plate. J. Orthop. Res. 24, 1317-1326 https://doi.org/10.1002/jor.20160
- Whitelock, J.M., and Iozzo, R.V. (2005). Heparan sulfate: a complex polymer charged with biological activity. Chem. Rev. 105, 2745-2764 https://doi.org/10.1021/cr010213m
- Whitelock, J.M., Murdoch, A.D., Iozzo, R.V., and Underwood, P.A. (1996). The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin and heparanases. J. Biol. Chem. 271, 10079-10086 https://doi.org/10.1074/jbc.271.17.10079
- Whitelock, J.M., Graham, L.D., Melrose, J., Murdoch, A.D., Iozzo, R.V., and Underwood, P.A. (1999). Human perlecan immunopurified from different endothelial cell sources has different adhesive properties for vascular cells. Matrix Biol. 18, 163-178 https://doi.org/10.1016/S0945-053X(99)00014-1
- Whitelock, J.M., Melrose, J., and Iozzo, R.V. (2008). Diverse cell signaling events modulated by perlecan. Biochemistry 47, 11174-11183 https://doi.org/10.1021/bi8013938
-
Wickstr
$\"{o}$ m, S.A., Alitalo, K., and Keski-Oja, J. (2005). Endostatin signaling and regulation of endothelial cell-matrix interactions. Adv. Cancer Res. 94, 197-229 https://doi.org/10.1016/S0065-230X(05)94005-0 - Winzen, U., Cole, G.J., and Halfter, W. (2003). Agrin is a chimeric proteoglycan with the attachment sites for heparan sulfate/chondroitin sulfate located in two multiple serine-glycine clusters. J. Biol. Chem. 278, 30106-30114 https://doi.org/10.1074/jbc.M212676200
- Witmer, A.N., van den Born, J., Vrensen, G.F.J.M., and Schlingemann, R.O. (2001). Vascular localization of heparan sulfate proteoglycans in retinas of patients with diabetes mellitus and in VEGF-induced retinopathy using domain-specific antibodies.Curr. Eye Res. 22, 190-197 https://doi.org/10.1076/ceyr.22.3.190.5519
-
Woodall, B.P., Nystr
$\"{o}$ m, A., Iozzo, R.A., Eble, J.A., Niland, S., Krieg, T., Eckes, B., Pozzi, A., and Iozzo, R.V. (2008). Integrin$\alpha$ 2$\beta$ 1 is the required receptor for endorepellin angiostatic activity. J. Biol.Chem. 283, 2335-2343 https://doi.org/10.1074/jbc.M708364200 -
Ylik
$\"{a}$ rpp$\"{a}$ , R., Eklund, L., Sormunen, R., Kontiola, A.I., Utriainen, A., M$\"{a}$ $\"{a}$ tt$\"{a}$ , M., Fukai, N., and Olsen, B.R. (2003). Lack of type XVIII collagen results in anterior ocular defects. FASEB J. 17, 2257-2259 https://doi.org/10.1096/fj.02-1001fje - Yurchenco, P.D., Amenta, P.S., and Patton, B.L. (2004). Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biol. 22, 521-538 https://doi.org/10.1016/j.matbio.2003.10.006
- Zatterstrom, U.K., Felbor, U., Fukai, N., and Olsen, B.R. (2000). Collagen XVIII/endostatin structure and functional role in angiogenesis. Cell Struct. Funct. 25, 97-101 https://doi.org/10.1247/csf.25.97
-
Zhang, J., Wang, Y., Chu, Y., Su, L., Gong, Y., Zhang, R., and Xiong, S. (2006). Agrin is involved in lymphocytes activation that is mediated by
$\alpha$ -dystroglycan. FASEB J. 20, 50-58 https://doi.org/10.1096/fj.04-3303com -
Zhang, Z., Ramirez, N.E., Yankeelov, T.E., Li, Z., Ford, L.E., Qi, Y., Pozzi, A., and Zutter, M.M. (2008).
$\alpha$ 2$\beta$ 1 integrin expression in the tumor microenvironment enhances tumor angiogenesis in a tumor cell-specific manner. Blood 111, 1980-1988 https://doi.org/10.1182/blood-2007-06-094680 - Zhou, Z., Wang, J., Cao, R., Morita, H., Soininen, R., Chan, K.M., Liu, B., Cao, Y., and Tryggvason, K. (2004). Impaired angiogenesis, delayed wound healing and retarded tumor growth in perlecan heparan sulfate-deficient mice. Cancer Res. 64, 4699-4702 https://doi.org/10.1158/0008-5472.CAN-04-0810
- Zoeller, J.J., and Iozzo, R.V. (2008). Proteomic profiling of endorepellin angiostatic activity on human endothelial cells. Proteome Sci. 6, 7 https://doi.org/10.1186/1477-5956-6-7
- Zoeller, J.J., McQuillan, A., Whitelock, J., Ho, S.-Y., and Iozzo, R.V. (2008). A central function for perlecan in skeletal muscle and cardiovascular development. J. Cell Biol. 181, 381-394 https://doi.org/10.1083/jcb.200708022
- Zorick, T.S., Mustacchi, Z., Bando, S.Y., Zatz, M., Moreira-Filho, C.A., Olsen, B., and Passos-Bueno, M.R. (2001). High serum endostatin levels in Down syndrome: Implications for improved treatment and prevention of solid tumors. Eur. J. Hum. Genet. 9, 811-814 https://doi.org/10.1038/sj.ejhg.5200721
-
Zweers, M.C., Davidson, J.M., Pozzi, A., Hallinger, R., Janz, K., Quondamatteo, F., Leutgeb, B., Krieg, T., and Eckes, B. (2007). Integrin
$\alpha$ 2$\beta$ 1 is required for regulation of murine wound angiogenesis but is dispensable for reepithelialization. J. Invest. Dermatol. 127, 467-478 https://doi.org/10.1038/sj.jid.5700546
피인용 문헌
- Introduction to the Tumour Microenvironment Review Series vol.13, pp.a8, 2009, https://doi.org/10.1111/j.1582-4934.2009.00843.x
- Role of tyrosine phosphatase SHP-1 in the mechanism of endorepellin angiostatic activity vol.114, pp.23, 2009, https://doi.org/10.1182/blood-2009-02-207134
- Structural and mechanistic classification of uronic acid-containing polysaccharide lyases vol.20, pp.12, 2009, https://doi.org/10.1093/glycob/cwq122
- Antiproliferative effect of D-glucuronyl C5-epimerase in human breast cancer cells vol.10, pp.None, 2009, https://doi.org/10.1186/1475-2867-10-27
- Quantitative and Qualitative Alterations of Heparan Sulfate in Fibrogenic Liver Diseases and Hepatocellular Cancer vol.58, pp.5, 2010, https://doi.org/10.1369/jhc.2010.955161
-
${\delta}$ -Catenin Affects the Localization and Stability of p120-Catenin by Competitively Interacting with E-Cadherin vol.29, pp.3, 2009, https://doi.org/10.1007/s10059-010-0030-2 - Prognostic relevance of collagen XVIII expression in metastatic gastric carcinoma vol.31, pp.3, 2010, https://doi.org/10.1007/s13277-010-0022-z
- Basement membrane components are key players in specialized extracellular matrices vol.67, pp.17, 2010, https://doi.org/10.1007/s00018-010-0367-x
- Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting vol.277, pp.19, 2009, https://doi.org/10.1111/j.1742-4658.2010.07800.x
- Domain structure elucidation of human decorin glycosaminoglycans vol.431, pp.2, 2009, https://doi.org/10.1042/bj20100788
- Binding of Procollagen C-Proteinase Enhancer-1 (PCPE-1) to Heparin/Heparan Sulfate vol.285, pp.44, 2009, https://doi.org/10.1074/jbc.m110.141366
- The multiple functions of collagen XVIII in development and disease vol.30, pp.2, 2009, https://doi.org/10.1016/j.matbio.2010.11.001
- Proteoglycans in cancer biology, tumour microenvironment and angiogenesis vol.15, pp.5, 2009, https://doi.org/10.1111/j.1582-4934.2010.01236.x
- Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting vol.278, pp.1, 2009, https://doi.org/10.1111/j.1742-4658.2010.07919.x
- Tendon Is Covered by a Basement Membrane Epithelium That Is Required for Cell Retention and the Prevention of Adhesion Formation vol.6, pp.1, 2009, https://doi.org/10.1371/journal.pone.0016337
- Lymphatic Endothelial Heparan Sulfate Deficiency Results in Altered Growth Responses to Vascular Endothelial Growth Factor-C (VEGF-C) vol.286, pp.17, 2011, https://doi.org/10.1074/jbc.m110.206664
- -Glucuronyl C5-epimerase suppresses small-cell lung cancer cell proliferation in vitro and tumour growth in vivo vol.105, pp.1, 2009, https://doi.org/10.1038/bjc.2011.170
- Molecular model of human heparanase with proposed binding mode of a heparan sulfate oligosaccharide and catalytic amino acids vol.97, pp.1, 2012, https://doi.org/10.1002/bip.21696
- Pro- and anti-angiogenic agents vol.37, pp.3, 2009, https://doi.org/10.1016/j.jmv.2012.02.002
- Proteoglycans in prostate cancer vol.9, pp.4, 2009, https://doi.org/10.1038/nrurol.2012.19
- Integrin-Mediated Cell-Matrix Interaction in Physiological and Pathological Blood Vessel Formation vol.2012, pp.None, 2009, https://doi.org/10.1155/2012/125278
- Breast and Ovarian Cancers : A Survey and Possible Roles for the Cell Surface Heparan Sulfate Proteoglycans vol.60, pp.1, 2012, https://doi.org/10.1369/0022155411428469
- Heparan Sulfate Biosynthesis : Methods for Investigation of the Heparanosome vol.60, pp.12, 2009, https://doi.org/10.1369/0022155412460056
- An Introduction to Proteoglycans and Their Localization vol.60, pp.12, 2012, https://doi.org/10.1369/0022155412464638
- Putative functions of extracellular matrix glycoproteins in secondary palate morphogenesis vol.3, pp.None, 2009, https://doi.org/10.3389/fphys.2012.00377
- Molecular Alterations Associated with Osteosarcoma Development vol.2012, pp.None, 2009, https://doi.org/10.1155/2012/523432
- Golgi-resident PAP-specific 3′-phosphatase-coupled sulfotransferase assays vol.423, pp.1, 2009, https://doi.org/10.1016/j.ab.2012.01.003
- Functional Overlap Between Chondroitin and Heparan Sulfate Proteoglycans During VEGF-Induced Sprouting Angiogenesis vol.32, pp.5, 2009, https://doi.org/10.1161/atvbaha.111.240622
- Fibroblast EXT1-Levels Influence Tumor Cell Proliferation and Migration in Composite Spheroids vol.7, pp.7, 2009, https://doi.org/10.1371/journal.pone.0041334
- Rat Mammary Extracellular Matrix Composition and Response to Ibuprofen Treatment During Postpartum Involution by Differential GeLC–MS/MS Analysis vol.11, pp.10, 2012, https://doi.org/10.1021/pr3003744
- Overview of Extracellular Matrix vol.57, pp.1, 2009, https://doi.org/10.1002/0471143030.cb1001s57
- Sequence Analysis and Domain Motifs in the Porcine Skin Decorin Glycosaminoglycan Chain vol.288, pp.13, 2009, https://doi.org/10.1074/jbc.m112.437236
- Decorin induces rapid secretion of thrombospondin-1 in basal breast carcinoma cells via inhibition of Ras homolog gene family, member A/Rho-associated coiled-coil containing protein kinase 1 vol.280, pp.10, 2009, https://doi.org/10.1111/febs.12148
- Biological functions of iduronic acid in chondroitin/dermatan sulfate vol.280, pp.10, 2009, https://doi.org/10.1111/febs.12214
- Specific genes involved in synthesis and editing of heparan sulfate proteoglycans show altered expression patterns in breast cancer vol.13, pp.None, 2013, https://doi.org/10.1186/1471-2407-13-24
- Post-Synthetic Regulation of HS Structure: The Yin and Yang of the Sulfs in Cancer vol.3, pp.None, 2009, https://doi.org/10.3389/fonc.2013.00331
- Heparan sulfate-protein binding specificity vol.78, pp.7, 2009, https://doi.org/10.1134/s0006297913070055
- Extracellular matrix of secondary lymphoid organs impacts on B-cell fate and survival vol.110, pp.31, 2013, https://doi.org/10.1073/pnas.1218131110
- Breaking the epithelial polarity barrier in cancer: the strange case of LKB1/PAR-4 vol.368, pp.1629, 2013, https://doi.org/10.1098/rstb.2013.0111
- Colorectal Cancer and Basement Membranes: Clinicopathological Correlations vol.2014, pp.None, 2009, https://doi.org/10.1155/2014/580159
- Assembly, heterogeneity, and breaching of the basement membranes vol.8, pp.3, 2014, https://doi.org/10.4161/cam.28733
- Insidious Changes in Stromal Matrix Fuel Cancer Progression vol.12, pp.3, 2009, https://doi.org/10.1158/1541-7786.mcr-13-0535
- Myocardial Extracellular Matrix : An Ever-Changing and Diverse Entity vol.114, pp.5, 2009, https://doi.org/10.1161/circresaha.114.302533
- Secreted Frizzled-related protein 2 as a target in antifibrotic therapeutic intervention vol.306, pp.6, 2009, https://doi.org/10.1152/ajpcell.00238.2013
- The role of vascular-derived perlecan in modulating cell adhesion, proliferation and growth factor signaling vol.35, pp.None, 2009, https://doi.org/10.1016/j.matbio.2014.01.016
- Apoptosis in capillary endothelial cells in ageing skeletal muscle vol.13, pp.2, 2009, https://doi.org/10.1111/acel.12169
- Delta-catenin promotes the proliferation and invasion of colorectal cancer cells by binding to E-cadherin in a competitive manner with p120 catenin vol.9, pp.1, 2009, https://doi.org/10.1007/s11523-013-0269-6
- Glycosaminoglycans in cancer treatment vol.133, pp.suppl2, 2009, https://doi.org/10.1016/s0049-3848(14)50016-3
- Vitamin A Deficiency and Alterations in the Extracellular Matrix vol.6, pp.11, 2009, https://doi.org/10.3390/nu6114984
- Extracellular matrix assembly: a multiscale deconstruction vol.15, pp.12, 2014, https://doi.org/10.1038/nrm3902
- Agrin and Perlecan Mediate Tumorigenic Processes in Oral Squamous Cell Carcinoma vol.9, pp.12, 2009, https://doi.org/10.1371/journal.pone.0115004
- Identification and characterization of the gene expression profiles for protein coding and non-coding RNAs of pancreatic ductal adenocarcinomas vol.6, pp.22, 2009, https://doi.org/10.18632/oncotarget.4233
- Diverse Roles of Heparan Sulfate and Heparin in Wound Repair vol.2015, pp.None, 2009, https://doi.org/10.1155/2015/549417
- Proteoglycan form and function: A comprehensive nomenclature of proteoglycans vol.42, pp.None, 2015, https://doi.org/10.1016/j.matbio.2015.02.003
- Decoding the Matrix: Instructive Roles of Proteoglycan Receptors vol.54, pp.30, 2009, https://doi.org/10.1021/acs.biochem.5b00653
- The role of perlecan and endorepellin in the control of tumor angiogenesis and endothelial cell autophagy vol.56, pp.5, 2015, https://doi.org/10.3109/03008207.2015.1045297
- Heparan sulfate proteoglycans undergo differential expression alterations in right sided colorectal cancer, depending on their metastatic character vol.15, pp.None, 2015, https://doi.org/10.1186/s12885-015-1724-9
- Serglycin in Quiescent and Proliferating Primary Endothelial Cells vol.10, pp.12, 2015, https://doi.org/10.1371/journal.pone.0145584
- Proteoglycans in liver cancer vol.22, pp.1, 2016, https://doi.org/10.3748/wjg.v22.i1.379
- Capillary Electrophoresis–Mass Spectrometry for the Analysis of Heparin Oligosaccharides and Low Molecular Weight Heparin vol.88, pp.3, 2009, https://doi.org/10.1021/acs.analchem.5b04405
- Kinetic and Structural Studies of Interactions between Glycosaminoglycans and Langerin vol.55, pp.32, 2009, https://doi.org/10.1021/acs.biochem.6b00555
- Endorepellin-evoked Autophagy Contributes to Angiostasis vol.291, pp.37, 2009, https://doi.org/10.1074/jbc.m116.740266
- Proteoglycan neofunctions: regulation of inflammation and autophagy in cancer biology vol.284, pp.1, 2009, https://doi.org/10.1111/febs.13963
- Heparan Sulfate and Heparan Sulfate Proteoglycans in Cancer Initiation and Progression vol.9, pp.None, 2009, https://doi.org/10.3389/fendo.2018.00483
- Proteoglycans as potential biomarkers in odontogenic tumors vol.22, pp.1, 2009, https://doi.org/10.4103/jomfp.jomfp_151_17
- A role for collagen type IV in cardiovascular disease? vol.315, pp.3, 2009, https://doi.org/10.1152/ajpheart.00070.2018
- Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics vol.118, pp.18, 2009, https://doi.org/10.1021/acs.chemrev.8b00354
- Heparan sulfate proteoglycans undergo differential expression alterations in left sided colorectal cancer, depending on their metastatic character vol.18, pp.None, 2009, https://doi.org/10.1186/s12885-018-4597-x
- Beyond proteases: Basement membrane mechanics and cancer invasion vol.218, pp.8, 2009, https://doi.org/10.1083/jcb.201903066
- Extracellular matrix contribution to skin wound re-epithelialization vol.75, pp.None, 2019, https://doi.org/10.1016/j.matbio.2018.01.002
- Spotlight on the Transglutaminase 2-Heparan Sulfate Interaction vol.7, pp.1, 2009, https://doi.org/10.3390/medsci7010005
- MMP13 inhibition rescues cognitive decline in Alzheimer transgenic mice via BACE1 regulation vol.142, pp.1, 2009, https://doi.org/10.1093/brain/awy305
- Descemet's Membrane Modulation of Posterior Corneal Fibrosis vol.60, pp.4, 2009, https://doi.org/10.1167/iovs.18-26451
- Electrospun Nanometer to Micrometer Scale Biomimetic Synthetic Membrane Scaffolds in Drug Delivery and Tissue Engineering: A Review vol.9, pp.5, 2009, https://doi.org/10.3390/app9050910
- Silver-Nanoparticle-Mediated Therapies in the Treatment of Pancreatic Cancer vol.2, pp.4, 2009, https://doi.org/10.1021/acsanm.9b00439
- The role of microRNAs regulating the expression of matrix metalloproteinases (MMPs) in breast cancer development, progression, and metastasis vol.234, pp.5, 2019, https://doi.org/10.1002/jcp.27445
- Coordinated Modulation of Corneal Scarring by the Epithelial Basement Membrane and Descemet's Basement Membrane vol.35, pp.8, 2009, https://doi.org/10.3928/1081597x-20190625-02
- Pathogenic effects of agrin V1727F mutation are isoform specific and decrease its expression and affinity for HSPGs and LRP4 vol.28, pp.16, 2019, https://doi.org/10.1093/hmg/ddz081
- Increased levels of serum serglycin and agrin is associated with adverse perinatal outcome in early onset preeclampsia vol.38, pp.5, 2009, https://doi.org/10.1080/15513815.2019.1604922
- Comparison of the Interactions of Different Growth Factors and Glycosaminoglycans vol.24, pp.18, 2009, https://doi.org/10.3390/molecules24183360
- Smart Nanotechnologies to Target Tumor with Deep Penetration Depth for Efficient Cancer Treatment and Imaging vol.2, pp.10, 2009, https://doi.org/10.1002/adtp.201900093
- Analysis of Procollagen C-Proteinase Enhancer-1/Glycosaminoglycan Binding Sites and of the Potential Role of Calcium Ions in the Interaction vol.20, pp.20, 2009, https://doi.org/10.3390/ijms20205021
- Cancer Metastasis: The Role of the Extracellular Matrix and the Heparan Sulfate Proteoglycan Perlecan vol.9, pp.None, 2009, https://doi.org/10.3389/fonc.2019.01482
- Corneal epithelial basement membrane: Structure, function and regeneration vol.194, pp.None, 2009, https://doi.org/10.1016/j.exer.2020.108002
- Corneal wound healing vol.197, pp.None, 2020, https://doi.org/10.1016/j.exer.2020.108089
- Descemet's membrane development, structure, function and regeneration vol.197, pp.None, 2009, https://doi.org/10.1016/j.exer.2020.108090
- Heparan Sulfate Proteoglycan Signaling in Tumor Microenvironment vol.21, pp.18, 2009, https://doi.org/10.3390/ijms21186588
- Lycopene enriched tomato extract suppresses chemically induced skin tumorigenesis in mice vol.90, pp.5, 2020, https://doi.org/10.1024/0300-9831/a000597
- Angiostatic cues from the matrix: Endothelial cell autophagy meets hyaluronan biology vol.295, pp.49, 2020, https://doi.org/10.1074/jbc.rev120.014391
- Key Matrix Remodeling Enzymes: Functions and Targeting in Cancer vol.13, pp.6, 2009, https://doi.org/10.3390/cancers13061441
- TGF beta −1, −2 and −3 in the modulation of fibrosis in the cornea and other organs vol.207, pp.None, 2009, https://doi.org/10.1016/j.exer.2021.108594
- The Biological and Biomechanical Role of Transglutaminase-2 in the Tumour Microenvironment vol.13, pp.11, 2009, https://doi.org/10.3390/cancers13112788
- Descemet's membrane injury and regeneration, and posterior corneal fibrosis, in rabbits vol.213, pp.None, 2009, https://doi.org/10.1016/j.exer.2021.108803