DOI QR코드

DOI QR Code

Induction of Pacemaker Currents by DA-9701, a Prokinetic Agent, in Interstitial Cells of Cajal from Murine Small Intestine

  • Choi, Seok (Department of Physiology, College of Medicine, Chosun University) ;
  • Choi, Jeong June (Laboratory of Pathology, College of Oriental Medicine, Daejeon University) ;
  • Jun, Jae Yeoul (Department of Physiology, College of Medicine, Chosun University) ;
  • Koh, Jae Woong (Department of Ophthalmology, College of Medicine, Chosun University) ;
  • Kim, Sang Hun (Department of Anesthesiology, College of Medicine, Chosun University) ;
  • Kim, Dong Hee (Laboratory of Pathology, College of Oriental Medicine, Daejeon University) ;
  • Pyo, Myoung-Yun (College of Pharmacy, Sookmyung Women's University) ;
  • Choi, Sangzin (Dong-A Pharm. Co., Ltd., Research and Development Center) ;
  • Son, Jin Pub (Dong-A Pharm. Co., Ltd., Research and Development Center) ;
  • Lee, Inki (Dong-A Pharm. Co., Ltd., Research and Development Center) ;
  • Son, Miwon (Dong-A Pharm. Co., Ltd., Research and Development Center) ;
  • Jin, Mirim (Laboratory of Pathology, College of Oriental Medicine, Daejeon University)
  • Received : 2008.08.04
  • Accepted : 2008.12.26
  • Published : 2009.03.31

Abstract

The interstitial cells of Cajal (ICC) are pacemaking cells required for gastrointestinal motility. The possibility of whether DA-9701, a novel prokinetic agent formulated with Pharbitis Semen and Corydalis Tuber, modulates pacemaker activities in the ICC was tested using the whole cell patch clamp technique. DA-9701 produced membrane depolarization and increased tonic inward pacemaker currents in the voltage-clamp mode. The application of flufenamic acid, a non-selective cation channel blocker, but not niflumic acid, abolished the generation of pacemaker currents induced by DA-9701. Pretreatment with a $Ca^{2+}$-free solution and thapsigargin, a $Ca^{2+}$-ATPase inhibitor in the endoplasmic reticulum, abolished the generation of pacemaker currents. In addition, the tonic inward currents were inhibited by U-73122, an active phospholipase C inhibitor, but not by $GDP-{\beta}-S$, which permanently binds G-binding proteins. Furthermore, the protein kinase C inhibitors, chelerythrine and calphostin C, did not block the DA-9701-induced pacemaker currents. These results suggest that DA-9701 might affect gastrointestinal motility by the modulation of pacemaker activity in the ICC, and the activation is associated with the non-selective cationic channels via external $Ca^{2+}$ influx, phospholipase C activation, and $Ca^{2+}$ release from internal storage in a G protein-independent and protein kinase C-independent manner.

Keywords

Acknowledgement

Supported by : Ministry of Science and Technology, Sookmyung Women's University

References

  1. Aiello, E.A., Clement-Chomienne, O., Sontag, D.P., Walsh, M.P., and Cole, W.C. (1996). Protein kinase C inhibits delayed rectifier K+ current in rabbit vascular smooth muscle cells. Am. J. Physiol. 27, H109-119 https://doi.org/10.1152/ajpheart.1996.271.1.H109
  2. Farrugia, G. (2008). Interstitial cells of Cajal in health and disease. Neurogastroenterol. Motil. 20 Suppl 1, 54-63 https://doi.org/10.1111/j.1365-2982.2008.01109.x
  3. Geraldino, R.S., Ferreira, A.J., Lima, M.A., Cabrine-Santos, M., Lages-Silva, E., and Ramirez, L.E. (2006). Interstitial cells of Cajal in patients with chagasic megacolon originating from a region of old endemicity. Pathophysiology 13, 71-74 https://doi.org/10.1016/j.pathophys.2005.12.003
  4. Huizinga, J.D., Thuneberg, L., Kluppel, M., Malysz, J., Mikkelsen, H.B., and Bernstein, A. (1995). W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373, 347-349 https://doi.org/10.1038/373347a0
  5. Huizinga, J.D., Thuneberg, L., Vanderwinden, J.M., and Rumessen, J.J. (1997). Interstitial cells of Cajal as targets for pharmacological intervention in gastrointestinal motor disorders. Trends Pharmacol. Sci. 18, 393-403 https://doi.org/10.1016/S0165-6147(97)01108-5
  6. Kim, Y.C., Koh, S.D., and Sanders, K.M. (2002). Voltage-dependent inward currents of interstitial cells of Cajal from murine colon and small intestine. J. Physiol. 541, 797-810 https://doi.org/10.1113/jphysiol.2002.018796
  7. Kim, T.W., Koh, S.D., Ordog, T., Ward, S.M., and Sanders, K.M. (2003). Muscarinic regulation of pacemaker frequency in murine gastric interstitial cells of Cajal. J. Physiol. 546, 415-425 https://doi.org/10.1113/jphysiol.2002.028977
  8. Kim, B.J., So, I., and Kim, K.W. (2006). Involvement of the phospholipase C beta1 pathway in desensitization of the carbacholactivated nonselective cationic current in murine gastric myocytes. Mol. Cells 22, 65-69
  9. Koh, S.D., Sanders, K.M., and Ward, S.M. (1998). Spontaneous electrical rhythmicity in cultured interstitial cells of cajal from the murine small intestine. J. Physiol. 513, 203-213 https://doi.org/10.1111/j.1469-7793.1998.203by.x
  10. Koh, S.D., Jun, J.Y., Kim, T.W., and Sanders, K.M. (2002). A Ca(2+)-inhibited non-selective cation conductance contributes to pacemaker currents in mouse interstitial cell of Cajal. J. Physiol. 540, 803-814 https://doi.org/10.1113/jphysiol.2001.014639
  11. Kuriyama, H., Kitamura, K., Itoh, T., and Inoue, R. (1998). Physiological features of visceral smooth muscle cells, with special reference to receptors and ion channels. Physiol. Rev 78, 811-920 https://doi.org/10.1152/physrev.1998.78.3.811
  12. Long, Q.L., Fang, D.C., Shi, H.T., and Luo, Y.H. (2004). Gastroelectric dysrhythm and lack of gastric interstitial cells of cajal. World J. Gastroenterol. 10, 1227-1230 https://doi.org/10.3748/wjg.v10.i8.1227
  13. McKay, C.M., and Huizinga, J.D. (2006). Muscarinic regulation of ether-a-go-go-related gene K+ currents in interstitial cells of Cajal. J. Pharmacol. Exp. Ther. 319, 1112-1123 https://doi.org/10.1124/jpet.106.109322
  14. Nakahara, M., Isozaki, K., Hirota, S., Vanderwinden, J.M., Takakura, R., Kinoshita, K., Miyagawa, J., Chen, H., Miyazaki, Y., Kiyohara, T., et al. (2002). Deficiency of KIT-positive cells in the colon of patients with diabetes mellitus. J. Gastroenterol. Hepatol 17, 666-670 https://doi.org/10.1046/j.1440-1746.2002.02756.x
  15. Ordog, T., Takayama, I., Cheung, W.K., Ward, S.M., and Sanders, K.M. (2000). Remodeling of networks of interstitial cells of Cajal in a murine model of diabetic gastroparesis. Diabetes 49, 1731-1739 https://doi.org/10.2337/diabetes.49.10.1731
  16. Pardi, D.S., Miller, S.M., Miller, D.L., Burgart, L.J., Szurszewski, J.H., Lennon, V.A., and Farrugia, G. (2002). Paraneoplastic dysmotility: loss of interstitial cells of Cajal. Am. J. Gastroenterol. 97, 1828-1833 https://doi.org/10.1111/j.1572-0241.2002.05851.x
  17. Park, S.J., McKay, C.M., Zhu, Y., and Huizinga, J.D. (2005). Volume-activated chloride currents in interstitial cells of Cajal. Am. J. Physiol. Gastrointest Liver Physiol. 289, G791-797 https://doi.org/10.1152/ajpgi.00050.2005
  18. Sakamoto, T., Unno, T., Matsuyama, H., Uchiyama, M., Hattori, M., Nishimura, M., and Komori, S. (2006). Characterization of muscarinic receptor-mediated cationic currents in longitudinal smooth muscle cells of mouse small intestine. J. Pharmacol. Sci. 100, 215-226 https://doi.org/10.1254/jphs.FP0050973
  19. Sanders, K.M. (1998). G protein-coupled receptors in gastrointestinal physiology. IV. Neural regulation of gastrointestinal smooth muscle. Am. J. Physiol. 275, G1-7 https://doi.org/10.1152/ajpcell.1998.275.3.Ca1
  20. Sanders, K.M., Ordog, T., and Ward, S.M. (2002). Physiology and pathophysiology of the interstitial cells of Cajal: from bench to bedside. IV. Genetic and animal models of GI motility disorders caused by loss of interstitial cells of Cajal. Am. J. Physiol. Gastrointest Liver Physiol. 282, G747-756 https://doi.org/10.1152/ajpgi.00362.2001
  21. Sanders, K.M., Koh, S.D., Ordog, T., and Ward, S.M. (2004). Ionic conductances involved in generation and propagation of electrical slow waves in phasic gastrointestinal muscles. Neurogastroenterol. Motil 16, 100-105 https://doi.org/10.1111/j.1743-3150.2004.00483.x
  22. Szurszewski, J.H. (1987). Electrical basis for gastrointestinal motility, 2nd ed., (New York: Raven Press)
  23. Thomsen, L., Robinson, T.L., Lee, J.C., Farraway, L.A., Hughes, M.J., Andrews, D.W., and Huizinga, J.D. (1998). Interstitial cells of Cajal generate a rhythmic pacemaker current. Nat. Med. 4, 848-851 https://doi.org/10.1038/nm0798-848
  24. Torihashi, S., Ward, S.M., and Sanders, K.M. (1997). Development of c-Kit-positive cells and the onset of electrical rhythmicity in murine small intestine. Gastroenterology 112, 144-155 https://doi.org/10.1016/S0016-5085(97)70229-4
  25. Torihashi, S., Fujimoto, T., Trost, C., and Nakayama, S. (2002). Calcium oscillation linked to pacemaking of interstitial cells of Cajal: requirement of calcium influx and localization of TRP4 in caveolae. J. Biol. Chem. 277, 19191-19197 https://doi.org/10.1074/jbc.M201728200
  26. Vanderwinden, J.M., and Rumessen, J.J. (1999). Interstitial cells of Cajal in human gut and gastrointestinal disease. Microsc. Res. Tech. 47, 344-360 https://doi.org/10.1002/(SICI)1097-0029(19991201)47:5<344::AID-JEMT6>3.0.CO;2-1
  27. Ward, S.M., and Sanders, K.M. (2006). Involvement of intramuscular interstitial cells of Cajal in neuroeffector transmission in the gastrointestinal tract. J. Physiol. 576, 675-682 https://doi.org/10.1113/jphysiol.2006.117390
  28. Ward, S.M., Ordog, T., Koh, S.D., Baker, S.A., Jun, J.Y., Amberg, G., Monaghan, K., and Sanders, K.M. (2000a). Pacemaking in interstitial cells of Cajal depends upon calcium handling by endoplasmic reticulum and mitochondria. J. Physiol. 525 Pt 2, 355-361 https://doi.org/10.1111/j.1469-7793.2000.t01-1-00355.x
  29. Ward, S.M., Beckett, E.A., Wang, X., Baker, F., Khoyi, M., and Sanders, K.M. (2000b). Interstitial cells of Cajal mediate cholinergic neurotransmission from enteric motor neurons. J. Neurosci. 20, 1393-1403
  30. Yamamoto, T., Watabe, K., Nakahara, M., Ogiyama, H., Kiyohara, T., Tsutsui, S., Tamura, S., Shinomura, Y., and Hayashi, N. (2008). Disturbed gastrointestinal motility and decreased interstitial cells of Cajal in diabetic db/db mice. J. Gastroenterol. Hepatol. 23, 660-667 https://doi.org/10.1111/j.1440-1746.2008.05326.x
  31. Zhang, H., Xu, X., Wang, Z., Li, C., and Ke, M. (2006). Correlation between gastric myoelectrical activity recorded by multi-channel electrogastrography and gastric emptying in patients with functional dyspepsia. Scand J. Gastroenterol. 41, 797-804 https://doi.org/10.1080/00365520500469750

Cited by

  1. Effects of Corydaline from Corydalis Tuber on Gastric Motor Function in an Animal Model vol.33, pp.6, 2009, https://doi.org/10.1248/bpb.33.958
  2. Effect of a New Prokinetic Agent DA-9701 Formulated with Corydalis Tuber and Pharbitidis Semen on Cytochrome P450 and UDP-Glucuronosyltransferase Enzyme Activities in Human Liver Microsomes vol.2012, pp.None, 2009, https://doi.org/10.1155/2012/650718
  3. Modulation of Pacemaker Potentials by Pyungwi-San in Interstitial Cells of Cajal from Murine Small Intestine - Pyungwi-San and Interstitial Cells of Cajal - vol.16, pp.1, 2009, https://doi.org/10.3831/kpi.2013.16.003
  4. DA-9701: A New Multi-Acting Drug for the Treatment of Functional Dyspepsia vol.21, pp.3, 2013, https://doi.org/10.4062/biomolther.2012.096
  5. Shengmaisan Regulates Pacemaker Potentials in Interstitial Cells of Cajal in Mice vol.16, pp.4, 2013, https://doi.org/10.3831/kpi.2013.16.025
  6. Pharmacokinetics of chlorogenic acid and corydaline in DA-9701, a new botanical gastroprokinetic agent, in rats vol.44, pp.7, 2014, https://doi.org/10.3109/00498254.2013.874610
  7. Carthami Flos Depolarizes the Interstitial Cells of Cajal and Increases the Motility in Gastrointestinal Tract vol.10, pp.5, 2009, https://doi.org/10.3923/ijp.2014.248.257
  8. Effects of DA-9701, a Novel Prokinetic Agent, on Phosphorylated Extracellular Signal-Regulated Kinase Expression in the Dorsal Root Ganglion and Spinal Cord Induced by Colorectal Distension in Rats vol.8, pp.2, 2014, https://doi.org/10.5009/gnl.2014.8.2.140
  9. Effect of DA-9701 on Colorectal Distension-Induced Visceral Hypersensitivity in a Rat Model vol.8, pp.4, 2014, https://doi.org/10.5009/gnl.2014.8.4.388
  10. Pharmacokinetics and Brain Distribution of Tetrahydropalmatine and Tetrahydroberberine after Oral Administration of DA-9701, a New Botanical Gastroprokinetic Agent, in Rats vol.38, pp.2, 2015, https://doi.org/10.1248/bpb.b14-00678
  11. Gender differences in corydaline pharmacokinetics in rats vol.45, pp.5, 2009, https://doi.org/10.3109/00498254.2014.988772
  12. Randomized, Controlled, Multi-center Trial: Comparing the Safety and Efficacy of DA-9701 and Itopride Hydrochloride in Patients With Functional Dyspepsia vol.21, pp.3, 2009, https://doi.org/10.5056/jnm14117
  13. Effect of DA-9701, a Novel Prokinetic Agent, on Post-operative Ileus in Rats vol.23, pp.1, 2009, https://doi.org/10.5056/jnm16003
  14. DA‐9701 improves colonic transit time and symptoms in patients with functional constipation: A prospective study vol.32, pp.12, 2009, https://doi.org/10.1111/jgh.13807
  15. DA-9701 (Motilitone): A Multi-Targeting Botanical Drug for the Treatment of Functional Dyspepsia vol.19, pp.12, 2009, https://doi.org/10.3390/ijms19124035
  16. Effect of DA-9701 on the Gastrointestinal Motility in the Streptozotocin-Induced Diabetic Mice vol.10, pp.22, 2009, https://doi.org/10.3390/jcm10225282