DOI QR코드

DOI QR Code

Amplification of Porcine SRY Gene for Sex Determination

  • Choi, S.G. (Division of Biological Science, Gachon University of Medicine and Science) ;
  • Bae, M.S. (Division of Biological Science, Gachon University of Medicine and Science) ;
  • Lee, E.S. (Division of Biological Science, Gachon University of Medicine and Science) ;
  • Kim, S.O. (Division of Biological Science, Gachon University of Medicine and Science) ;
  • Kim, B.K. (Division of Biological Science, Gachon University of Medicine and Science) ;
  • Yang, J.H. (Division of Biological Science, Gachon University of Medicine and Science) ;
  • Jeon, C.E. (Division of Biological Science, Gachon University of Medicine and Science) ;
  • Kim, H.H. (Graduate School of Medicine, Gachon University of Medicine and Science) ;
  • Hwang, Y.J. (Division of Biological Science, Gachon University of Medicine and Science) ;
  • Lee, E.S. (School of Veterinary Medicine, Kangwon National University) ;
  • Kim, D.Y. (Division of Biological Science, Gachon University of Medicine and Science)
  • Received : 2009.01.07
  • Accepted : 2009.03.30
  • Published : 2009.08.01

Abstract

The separation of X and Y chromosome-bearing sperm is of use in many aspects of livestock maintenance. In this study, we sought to determine the difference in DNA content between X- and Y-bearing sperm, separate sperm into X- and Y-enriched pools, and assess the efficacy of sorting. Sperm collected from Duroc and miniature pigs were stained with 20.8 $\mu{M}$ Hoechst 33342 and analyzed using a high-speed cell sorter. Measurement of the fluorescence intensity of stained sperm nuclei revealed that the X-bearing sperm of Duroc and miniature pigs respectively contain 2.75% and 2.88% more DNA than Y-bearing sperm. In total, 50.18% of the sperm were assigned to the X-sorted sample and 49.82% was assigned to the Y-sorted sample for Duroc pigs. For miniature pigs, the Xsorted sample represented 50.19% of the population and the Y-sorted represented 49.81% of the population. Duplex PCR was used to evaluate accuracy of sorting. A fast and reliable method for porcine sexing was developed through amplification of the sex-determining region of the Y chromosome gene (SRY). Oligonucleotide primers were designed to amplify the conserved porcine SRY high motility group (HMG) box sequence motif. We found that the primer pair designed in this study was 1.46 times more specific than previously reported primers. Thus, this study shows that the present method can be applied in porcine breeding programs to facilitate manipulation of the sex ratio of offspring and to achieve precise sexing of porcine offspring by amplification of the HMG box of the SRY gene.

Keywords

References

  1. Ashwood-Smith, M. J. 1994. Safety of human sperm selection by flow cytometry. Hum. Reprod. 9:757 https://doi.org/10.1093/oxfordjournals.humrep.a138589
  2. Beckett, T. A., R. H. Martin and D. I. Hoar. 1989. Assessment of the sephadex technique for selection of X-bearing human sperm by analysis of sperm chromosomes, deoxyribonucleic acid and Y-bodies. Fertil. Steril. 52(5):829-835 https://doi.org/10.1016/S0015-0282(97)81447-1
  3. Byun, J. W., S. H. Choo, H. H. Kim, Y. J. Kim, Y. J. Hwang and D. Y. Kim. 2008. Evaluation of boar sperm viability by MTT reduction assay in beltsville thawing solution extender. Asian-Aust. J. Anim. Sci. 21(4):494-498 https://doi.org/10.5713/ajas.2008.70480
  4. Carlos, G. A., F. M. Antonio, K. Luiz, C. M. C. Vania, C. M. Andrea and R. T. Maria. 2005. A bovine protocol for training professionals in preimplantation genetic diagnosis using polymerase chain reaction. Fertil. Steril. 84:895-899 https://doi.org/10.1016/j.fertnstert.2005.02.051
  5. Checa, M. L., S. Dunner and J. Ca$\tilde{n}$$\acute{o}$n. 2002. Prediction of X and Y chromosome content in bovine sperm by using DNA pools through capillary electrophoresis. Theriogenology 58(8):1579-1586 https://doi.org/10.1016/S0093-691X(02)01077-4
  6. Chen, A-qin., Zi-rong Xu and Song-dong Yu. 2007. Sexing goat embryos by PCR amplification of X- and Y- chromosome specific sequence of the amelogenin gene. Asian-Aust. J. Anim. Sci. 20(11):1689-1693 https://doi.org/10.5713/ajas.2007.1689
  7. Condon, K. C., G. C. Condon, T. H. Dafa'alla, G. Fu, C. E. Phillips, L. Jin, P. Gong and L. Alphey. 2007. Genetic sexing through the use of Y-linked transgenes. Insect Biochem. Mol. Biol. 37(11):1168-1176 https://doi.org/10.1016/j.ibmb.2007.07.006
  8. Durand, R. E. and P. L. Olive. 1982. Cytotoxicity, mutagenicity and DNA damage by Hoechst 33342. J. Histochem. Cytochem. 30:111-116 https://doi.org/10.1177/30.2.7061816
  9. Gardiner-Garden, M. 1999. Technique for sorting X and Y spermatozoa may adversely affect histone-associated regions in human spermatozoa. Hum. Reprod. 14:1403-1404 https://doi.org/10.1093/humrep/14.5.1403
  10. Garner, D. L., B. L. Gledhill, D. Pinkel, S. Lake, D. Stephenson and M. A. Van Dilla. 1983. Quantification of the X- and Ychromosome-bearing spermatozoa of domestic animals by flow cytometry. Biol. Reprod. 28:312-321 https://doi.org/10.1095/biolreprod28.2.312
  11. Huang, Jinming., You Wei, Naike Wu and Tan Xiuwen. 2007. Use of the non-electrophoretic method to detect testis specific protein gene for sexing in preimplantation bovine embryos. Asian-Aust. J. Anim. Sci. 20(6):866-871 https://doi.org/10.5713/ajas.2007.866
  12. Johnson, L. A. 2000. Sexing mammalian sperm for production of offspring: the state-of-the-art. Anim. Reprod. Sci. 60-61:93-107 https://doi.org/10.1016/S0378-4320(00)00088-9
  13. Johnson, L. A. and G. R. Welch. 1999. Sex preselection: highspeed flow cytometric sorting of X and Y sperm for maximum efficiency. Theriogenology 52:1323-1341 https://doi.org/10.1016/S0093-691X(99)00220-4
  14. Johnson, L. A., D. Rath, J. M. Vazquez, W. M. Maxwell and J. R. Dobrinsky. 2005. Preselection of sex of offspring in swine for production: current status of the process and its application. Theriogenology 63:615-624 https://doi.org/10.1016/j.theriogenology.2004.09.035
  15. Kelly, S., J. Yotis, M. Macris and V. Harley. 2003. Recombinanat expression, purification and characterization of the HMG domain of human SRY. Prot. Pept. Lett. 10:281-286 https://doi.org/10.2174/0929866033479004
  16. Kim, H. H., D. E. Roh, T. K. Jo, J. W. Byun, J. W. Lee, Y. S. Lee, Y. J. Hwang and D. Y. Kim. 2007. Evaluation of sexing in boar sperm using chromogenic in situ hybridization. J. Emb. Trans. 22(3):173-178
  17. Lobel, T. E., J. Bempechat, J. C. Gewirtz, T. Shoken-Topaz and E. Bashe. 1993. The role of gender-related information and selfendorsement of traits in preadolescents' inferences and judgments. Child Dev. 64(4):1285-1294 https://doi.org/10.2307/1131340
  18. Lu, W., N. Rawlings, J. Zhao and H. Wang. 2007. Amplification and application of the HMG box of bovine SRY gene for sex determination. Anim. Reprod. Sci. 100:186-191 https://doi.org/10.1016/j.anireprosci.2006.08.023
  19. Mara, L., S. Pilichi, A. Sanna, C. Accardo, B. Chessa, F. Chessa, M. Dattena, G. Bomboi and P. Cappai. 2004. Sexing of in vitro produced ovine embryos by duplex PCR. Mol. Reprod. Dev. 69:35-42 https://doi.org/10.1002/mrd.20147
  20. Matsuda, Y. and I. Tobari. 1988. Chromosomal analysis in mouse eggs fertilized in vitro with sperm exposed to ultraviolet light(UV) and methyl and ethyl methanesulfonate (MMS and EMS). Mutat. Res. 198:131-144 https://doi.org/10.1016/0027-5107(88)90048-6
  21. Munne, S. 1994. Flow cytometry separation of X and Y spermatozoa could be detrimental for human embryos. Hum. Reprod. 9:758 https://doi.org/10.1016/S0093-691X(00)00276-4
  22. Notarianni, E. 1992. Transgenesis and genetic engineering in domestic animals: Applications of Gene Transfer. Wiley UK. 251-281
  23. O'Brien, J. K., T. Stojanov, S. J. Heffernan, F. K. Hollinshead, L. Vogelnest, W. M. Maxwell and G. Evans. 2005. Flow cytometric sorting of non-human primate sperm nuclei. Theriogenology 63:246-259 https://doi.org/10.1016/j.theriogenology.2004.04.013
  24. Ogawa, S., H. Yamakawa, J. Yamanoi, S. Nishida, Y. Kano, T. Takeshima, K. Tauchi and H. Nagashima. 1988. Are fluorescent bodies of Y-spermatozoa detectable in common with mammalan species? Theriogenology 29(5):1083-1089 https://doi.org/10.1016/S0093-691X(88)80032-3
  25. Parati, K., G. Bongioni, R. Aleandri and A. Galli. 2006. Sex ratio determination in bovine semen: a new approach by quantitative real time PCR. Theriogenology 66(9):2202-2209 https://doi.org/10.1016/j.theriogenology.2006.07.007
  26. Park, J. H., J. H. Lee, K. M. Choi, S. Y. Joung, J. Y. Kim, G. M. Chung, D. I. Jin and K. S. Im. 2001. Rapid sexing of preimplantation bovine embryo using consecutive and multiplex polymerase chain reaction (PCR) with biopsied single blastomere. Theriogenology 55:1843-1853 https://doi.org/10.1016/S0093-691X(01)00526-X
  27. Parrilla, I., J. M. V$\acute{a}$zquez, M. Oliver-Bonet, J. Navarro, J. Yelamos, J. Roca and E. A. Mart$\acute{i}$nez. 2003. Fluorescence in situ hybridization in diluted and flow cytometrically sorted boar spermatozoa using specific DNA direct probes labelled by nick translation. Reproduction 123:317-325
  28. Peter, J. M. and H. S. Andrew. 2001. Rapid DNA extraction and PCR sexing of mouse embryos. Mol. Reprod. Dev. 60:225-226 https://doi.org/10.1002/mrd.1081
  29. Rubes, J., M. Vozdova and S. Kubıckova. 1999. Aneuploidy in pig sperm: multicolor fluorescence in situ hybridization using probes for chromosomes 1, 10, and Y. cytogenetics and cell. Genetics 85:200-204 https://doi.org/10.1159/000015293
  30. Saravanan, T., A. Mahalinga Nainar, K. Kumanan and A. Kumaresan. 2003. Sexing of sheep embryos produced in vitro by polymerase chain reaction and sex-specific polymorphism. Asian-Aust. J. Anim. Sci. 16(5):650-654 https://doi.org/10.5713/ajas.2003.650
  31. Sathasivam, K., S. Kageyama, K. Chikuni and E. Notarianni. 1995. Sex determination in the domestic pig by DNA amplification using HMG-box sequence. Anim. Reprod. Sci. 38:321-326 https://doi.org/10.1016/0378-4320(94)01371-R
  32. Seidel, Jr. G. E. and D. L. Garner. 2002. Sexing mammalian sperm by flow cytometry. Reproduction 124:733-743 https://doi.org/10.1530/rep.0.1240733
  33. Sohn, S. H., C. Y. Lee, E. K. Ryu, J. Y. Han, A. S. Multani and S. Pathak. 2002. Rapid sex identification of chicken by fluorescence in situ hybridization using a W chromosomespecific DNA probe. Asian-Aust. J. Anim. Sci. 15(11):1531-1535 https://doi.org/10.5713/ajas.2002.1531
  34. Taketo, T., C. H. Lee, J. Zhang, Y. Li, C. Y. Lee and Y. F. Lau. 2005. Expression of SRY proteins in both normal and sexrevered XY fetal mouse gonads. Dev. Dyn. 233:612-622 https://doi.org/10.1002/dvdy.20352
  35. Thomsen, P. D. and P. H. Poulsen. 1993. Analysis of the gonadal sex of five intersex pigs using Y chromosomal markers. Hereditas 119(3):205-207 https://doi.org/10.1111/j.1601-5223.1993.00205.x
  36. Veerhuis, R., P. J. Hendriksen, A. M. Hengst, L. Kruijt, M. Tieman and P. Booman. 1994. The production of anti-H-Y monoclonal antibodies: their potential use in a sex test for bovine embryos. Vet. Immunol. Immunopathol. 42(3-4):317-330 https://doi.org/10.1016/0165-2427(94)90076-0
  37. Whyte, J. J., R. M. Roberts and C. S. Rosenfeld. 2007. Fluorescent in situ hybridization for sex chromosome determination before and after fertilization in mice. Theriogenology 67:1022-1031 https://doi.org/10.1016/j.theriogenology.2006.11.014

Cited by

  1. Determination of Sex Origin of Meat and Meat Products on the DNA Basis: A Review vol.55, pp.10, 2015, https://doi.org/10.1080/10408398.2012.690095