DOI QR코드

DOI QR Code

Mechanism, Function and Regulation of Microtubule-Dependent Microtubule Amplification in Mitosis

  • Zhu, Hui (Department of Biological Sciences, Stanford University) ;
  • Fang, Kayleen (Department of Biological Sciences, Stanford University) ;
  • Fang, Guowei (Department of Biological Sciences, Stanford University)
  • Received : 2008.12.03
  • Accepted : 2008.12.07
  • Published : 2009.01.31

Abstract

Mitotic spindle mediates the segregation of chromosomes in the cell cycle and the proper function of the spindle is crucial to the high fidelity of chromosome segregation and to the stability of the genome. Nucleation of microtubules (MTs) from centrosomes and chromatin represents two well-characterized pathways essential for the assembly of a dynamic spindle in mitosis. Recently, we identified a third MT nucleation pathway, in which existing MTs in the spindle act as a template to promote the nucleation and polymerization of MTs, thereby efficiently amplifying MTs in the spindle. We will review here our current understanding on the molecular mechanism, the physiological function and the cell-cycle regulation of MT amplification.

Keywords

Acknowledgement

Supported by : National Institutes of Health

References

  1. Barr, F.A., Sillje, H.H., and Nigg, E.A. (2004). Polo-like kinases and the orchestration of cell division. Nat. Rev. Mol. Cell Biol. 5, 429-440 https://doi.org/10.1038/nrm1401
  2. Gadde, S., and Heald, R. (2004). Mechanisms and molecules of the mitotic spindle. Curr. Biol. 14, R797-805 https://doi.org/10.1016/j.cub.2004.09.021
  3. Goshima, G., Mayer, M., Zhang, N., Stuurman, N., and Vale, R.D. (2008). Augmin: a protein complex required for centrosomeindependent microtubule generation within the spindle. J. Cell Biol. 181, 421-429 https://doi.org/10.1083/jcb.200711053
  4. Haren, L., Remy, M.H., Bazin, I., Callebaut, I., Wright, M., and Merdes, A. (2006). NEDD1-dependent recruitment of the $\gamma$-tubulin ring complex to the centrosome is necessary for centriole duplication and spindle assembly. J. Cell Biol. 175, 505-515 https://doi.org/10.1083/jcb.200510028
  5. Janson, M.E., Setty, T.G., Paoletti, A., and Tran, P.T. (2005). Efficient formation of bipolar microtubule bundles requires microtubule-bound $\gamma$-tubulin complexes. J. Cell Biol. 169, 297-308 https://doi.org/10.1083/jcb.200410119
  6. Kirschner, M., and Mitchison, T. (1986). Beyond self-assembly: from microtubules to morphogenesis. Cell 45, 329-342 https://doi.org/10.1016/0092-8674(86)90318-1
  7. Kline-Smith, S.L., and Walczak, C.E. (2004). Mitotic spindle assembly and chromosome segregation: refocusing on microtubule dynamics. Mol. Cell 15, 317-327 https://doi.org/10.1016/j.molcel.2004.07.012
  8. Luders, J., Patel, U.K., and Stearns, T. (2006). GCP-WD is a $\gamma$-tubulin targeting factor required for centrosomal and chromatin-mediated microtubule nucleation. Nat. Cell Biol. 8, 137-147 https://doi.org/10.1038/ncb1349
  9. Maiato, H., DeLuca, J., Salmon, E.D., and Earnshaw, W.C. (2004). The dynamic kinetochore-microtubule interface. J. Cell Sci. 117, 5461-5477 https://doi.org/10.1242/jcs.01536
  10. McIntosh, J.R., Grishchuk, E.L., and West, R.R. (2002). Chromosome-microtubule interactions during mitosis. Annu. Rev. Cell Dev. Biol. 18, 193-219 https://doi.org/10.1146/annurev.cellbio.18.032002.132412
  11. Murata, T., Sonobe, S., Baskin, T.I., Hyodo, S., Hasezawa, S., Nagata, T., Horio, T., and Hasebe, M. (2005). Microtubuledependent microtubule nucleation based on recruitment of $\gamma$-tubulin in higher plants. Nat. Cell Biol. 7, 961-968 https://doi.org/10.1038/ncb1306
  12. Petronczki, M., Lenart, P., and Peters, J.M. (2008). Polo on the Rise-from Mitotic Entry to Cytokinesis with Plk1. Dev. Cell 14, 646-659 https://doi.org/10.1016/j.devcel.2008.04.014
  13. Scholey, J.M., Brust-Mascher, I., and Mogilner, A. (2003). Cell division. Nature 422, 746-752 https://doi.org/10.1038/nature01599
  14. van de Weerdt, B.C., and Medema, R.H. (2006). Polo-like kinases: a team in control of the division. Cell Cycle 5, 853-864 https://doi.org/10.4161/cc.5.8.2692
  15. Wiese, C., and Zheng, Y. (2006). Microtubule nucleation: $\gamma$-tubulin and beyond. J. Cell Sci.119, 4143-4153 https://doi.org/10.1242/jcs.03226
  16. Zhu, H., Coppinger, J.A., Jang, C.Y., Yates, J.R., 3rd, and Fang, G. (2008). FAM29A promotes microtubule amplification via recruitment of the NEDD1–$\gamma$-tubulin complex to the mitotic spindle. J. Cell Biol. 183, 835-848 https://doi.org/10.1083/jcb.200807046

Cited by

  1. Lupeol triterpene, a novel diet-based microtubule targeting agent: Disrupts survivin/cFLIP activation in prostate cancer cells vol.388, pp.3, 2009, https://doi.org/10.1016/j.bbrc.2009.08.060
  2. Interactions between EB1 and Microtubules vol.284, pp.47, 2009, https://doi.org/10.1074/jbc.m109.013466
  3. Depletion of tubulin polymerization promoting protein family member 3 suppresses HeLa cell proliferation vol.333, pp.1, 2010, https://doi.org/10.1007/s11010-009-0208-0
  4. Stable knockdown of TPPP3 by RNA interference in Lewis lung carcinoma cell inhibits tumor growth and metastasis vol.343, pp.1, 2009, https://doi.org/10.1007/s11010-010-0518-2
  5. Neural Wiskott-Aldrich syndrome protein is required for accurate chromosome congression and segregation vol.31, pp.6, 2011, https://doi.org/10.1007/s10059-011-2292-8
  6. Aurora-A Phosphorylates Augmin Complex Component Hice1 Protein at an N-terminal Serine/Threonine Cluster to Modulate Its Microtubule Binding Activity during Spindle Assembly vol.286, pp.34, 2009, https://doi.org/10.1074/jbc.m111.266767