DOI QR코드

DOI QR Code

Sustained Viral Activity of Epstein-Barr Virus Contributes to Cellular Immortalization of Lymphoblastoid Cell Lines

  • Jeon, Jae-Pil (Korea BioBank, Center for Genome Science, Korea National Institute of Health, Korea Center for Disease Control and Prevention) ;
  • Nam, Hye-Young (Korea BioBank, Center for Genome Science, Korea National Institute of Health, Korea Center for Disease Control and Prevention) ;
  • Shim, Sung-Mi (Korea BioBank, Center for Genome Science, Korea National Institute of Health, Korea Center for Disease Control and Prevention) ;
  • Han, Bok-Ghee (Korea BioBank, Center for Genome Science, Korea National Institute of Health, Korea Center for Disease Control and Prevention)
  • Received : 2008.04.21
  • Accepted : 2008.11.25
  • Published : 2009.02.28

Abstract

EBV-transformed lymphoblastoid cell lines (LCLs) are used as a resource for human genetic, immunological, and pharmacogenomic studies. We investigated the biological activity of 20 LCL strains during continuous long-term subculture up to a passage number of 160. Out of 20 LCL strains, 17 proliferated up to a passage number of 160, at which point LCLs are generally considered as "immortalized". The other three LCL strains lost the ability to proliferate at an average passage number of 41, during which these LCLs may have undergone cellular crisis. These non-immortal LCL strains exhibited no telomerase activity, decreased EBV gene expression, and a lower copy number of the EBV genome and mitochondrial DNA when compared with immortal LCLs. Thus, this study suggests that sustained EBV viral activity as well as telomerase activity may be required for complete LCL immortalization.

Keywords

Acknowledgement

Supported by : National Institute of Health

References

  1. Belair, C.D., Yeager, T.R., Lopez, P.M., and Reznikoff, C.A. (1997). Telomerase activity: A biomarker of cell proliferation, not malignant transformation. Proc. Natl. Acad. Sci. USA 94, 13677-13682 https://doi.org/10.1073/pnas.94.25.13677
  2. Cahir-McFarland, E.D., Carter, K., Rosenwald, A., Giltnane, J.M., Henrickson, S.E., Staudt, L.M., and Kieff, E. (2004). Role of NF-{kappa}B in cell survival and transcription of latent membrane protein 1-expressing or epstein-Barr virus latency III-infected Cells. J. Virol. 78, 4108-4119 https://doi.org/10.1128/JVI.78.8.4108-4119.2004
  3. Carter, K.L., Cahir-McFarland, E., and Kieff, E. (2002). Epstein-Barr virus-induced changes in B-lymphocyte gene expression. J. Virol. 76, 10427-10436 https://doi.org/10.1128/JVI.76.20.10427-10436.2002
  4. Cooper, A., Johannsen, E., Maruo, S., Cahir-McFarland, E., Illanes, D., Davidson, D., and Kieff, E. (2003). EBNA3A association with RBP-Jkappa down-regulates c-myc and Epstein-Barr virustransformed lymphoblast growth. J. Virol. 77, 999-1010 https://doi.org/10.1128/JVI.77.2.999-1010.2003
  5. Eliopoulos, A.G., and Young, L.S. (2001). LMP1 structure and signal transduction. Semin. Cancer Biol. 11, 435-444 https://doi.org/10.1006/scbi.2001.0410
  6. Grimm, T., Schneider, S., Naschberger, E., Huber, J., Guenzi, E., Kieser, A., Reitmeir, P., Schulz, T.F., Morris, C.A., and Sturzl, M. (2005). EBV latent membrane protein-1 protects B cells from apoptosis by inhibition of BAX. Blood 105, 3263-3269 https://doi.org/10.1182/blood-2004-07-2752
  7. Hahn, W.C. (2002). Immortalization and transformation of human cells. Mol. Cells 13, 351-361
  8. Hei, T.K., Persaud, R., Zhou, H., and Suzuki, M. (2004) Genotoxicity in eyes of bystander cells. Mutat. Res. 568, 111-120 https://doi.org/10.1016/j.mrfmmm.2004.07.015
  9. Henkel, T., Ling, P.D., Hayward, S.D., and Peterson M.G. (1994). Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein J kappa, Science 265, 92-95 https://doi.org/10.1126/science.8016657
  10. Hur, D.Y., Lee, M.H., Kim, J.W., Kim, J.H., Shin, Y.K., Rho. J.K., Kwack, K.B., Lee, W.J., and Han, B.G. (2005). CD19 signalling improves the Epstein-Barr virus-induced immortalization of human B cell. Cell Prolif. 38, 35-45 https://doi.org/10.1111/j.1365-2184.2005.00328.x
  11. Jeon, J.P., Shim, S.M., Nam, H.Y., Baik, S.Y., Kim. J.W., and Han, B.G. (2007). Copy number increase of 1p36.33 and mitochondrial genome amplification in Epstein-Barr virus-transformed lymphoblastoid cell lines. Cancer Genet. Cytogenet. 173, 122-130 https://doi.org/10.1016/j.cancergencyto.2006.10.010
  12. Jeon, J.P., Kim, J.W., Park, B., Nam, H.Y., Shim, S.M., Lee, M.H., and Han, B.G.. (2008) Identification of tumor necrosis factor signaling-related proteins during Epstein-Barr virus-induced B cell transformation. Acta Virologica 52,151-159
  13. Johannsen, E., Koh, E., Mosialos, G., Tong, X., Kieff, E., and Grossman, S.R. (1995). Epstein-Barr virus nuclear protein 2 transactivation of the latent membrane protein 1 promoter is mediated by J kappa and PU.1. J. Virol. 69, 253-262
  14. Johannsen, E., Miller, C.L., Grossman, S.R., and Kieff, E. (1996). EBNA-2 and EBNA-3C extensively and mutually exclusively associate with RBPJkappa in Epstein-Barr virus-transformed B lymphocytes. J. Virol. 70, 4179-4183
  15. Kamranvar, S.A., Gruhne, B., Szeles, A., and Masucci, M.G. (2007). Epstein-Barr virus promotes genomic instability in Burkitt's lymphoma. Oncogene 26, 5115-5123 https://doi.org/10.1038/sj.onc.1210324
  16. Kieff, E., and Rickinson, A.B. (2001). In Fields Virology, D.M. Knipe, and P.M. Howley, eds. (Lippincott, Philadelphia, USA). Vol. 2, pp. 2511-2628
  17. Kilger, E., Kieser, A., Baumann, M., and Hammerschmidt, W. (1998). Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J. 17, 1700-1709 https://doi.org/10.1093/emboj/17.6.1700
  18. Kim, K.J., Lee, H.J., Park, M.H., Cha, S.H., Kim, K.S., Kim, H.T., Kimm, K., Oh, B., and Lee, J.Y. (2006). SNP identification, linkage disequilibrium, and haplotype analysis for a 200-kb genomic region in a Korean population. Genomics 88, 535-540 https://doi.org/10.1016/j.ygeno.2006.03.003
  19. Liu, J.P., Cassar, L., Pinto, A., and Li, H. (2006). Mechanisms of cell immortalization mediated by EB viral activation of telomerase in nasopharyngeal carcinoma. Cell Res. 16, 809-817 https://doi.org/10.1038/sj.cr.7310098
  20. McClain, K., Estrov, Z., Raju, U., Kelley, P.K., and Aggarwal, B.B. (1997). Epstein-Barr virus EBNA-2 gene expression enhances lymphotoxin production by B lymphocytes. Methods 11, 83-87 https://doi.org/10.1006/meth.1996.0391
  21. Mei, Y.P., Zhu, X.F., Zhou, J.M., Huang, H., Deng, R., and Zeng, Y.X. (2006). siRNA targeting LMP1-induced apoptosis in EBVpositive lymphoma cells is associated with inhibition of telomerase activity and expression. Cancer Lett. 232, 189-198 https://doi.org/10.1016/j.canlet.2005.02.010
  22. Mochida, A., Gotoh, E., Senpuku, H., Harada, S., Kitamura, R., Takahashi, T., and Yanagi, K. (2005). Telomere size and telomerase activity in Epstein-Barr virus (EBV)-positive and EBVnegative Burkitt's lymphoma cell lines. Arch. Virol. 150, 2139-2150 https://doi.org/10.1007/s00705-005-0557-2
  23. Redon, R., Ishikawa, S., Fitch, K.R., Feuk, L., Perry, G.H., Andrews, T.D., Fiegler, H., Shapero, M.H., Carson, A.R., Chen, W., et al. (2006). Global variation in copy number in the human genome. Nature 444, 444-454 https://doi.org/10.1038/nature05329
  24. Robertson, E.S., Lin, J., and Kieff, E. (1996). The amino-terminal domains of Epstein-Barr virus nuclear proteins 3A, 3B, and 3C interact with RBPJ(kappa). J. Virol. 70, 3068-3074
  25. Rodriguez-Revenga, L., Mila, M., Rosenberg, C., Lamb, A., and Lee, C. (2007). Structural variation in the human genome: the impact of copy number variants on clinical diagnosis. Genet. Med. 9, 600-606 https://doi.org/10.1097/GIM.0b013e318149e1e3
  26. Saito, N., Courtois, G., Chiba, A., Yamamoto, N., Nitta, T., Hironaka, N., Rowe, M., Yamamoto, N., and Yamaoka, S. (2003). Two carboxyl-terminal activation regions of Epstein-Barr virus latent membrane protein 1 activate NF-$_{\kappa}$B through distinct signaling pathways in fibroblast cell lines. J. Biol. Chem. 278, 46565-46575 https://doi.org/10.1074/jbc.M302549200
  27. Shimizu, N., Tanabe-Tochikura, A., Kuroiwa, Y., and Takada, K. (1994). Isolation of Epstein-Barr virus (EBV)-negative cell clones from the EBV-positive Burkitt's lymphoma (BL) line Akata: malignant phenotypes of BL cells are dependent on EBV. J. Virol. 68, 6069-6073
  28. Spender, L.C., Cornish, G.H., Sullivan, A., and Farrell, P.J. (2002). Expression of transcription factor AML-2 (RUNX3, CBFalpha-3) is induced by Epstein-Barr virus EBNA-2 and correlates with the B-cell activation phenotype. J. Virol. 76, 4919-4927 https://doi.org/10.1128/JVI.76.10.4919-4927.2002
  29. Srinivas, S.K., and Sixbey, J.W. (1995). Epstein-Barr virus induction of recombinase-activating genes RAG1 and RAG2. J. Virol. 69, 8155-8158
  30. Sugimoto, M., Furuichi, Y., Ide, T., and Goto, M. (1999). Incorrect us of 'immortalization' for B-lymphoblastoid cell lines transformed by Epstein-Barr virus. J. Virol. 73, 9690-9691
  31. Sugimoto, M., Tahara, H., Ide, T., and Furuichi, Y. (2004). Steps involved in immortalization and tumorigenesis in human Blymphoblastoid cell lines transformed by Epstein-Barr virus. Cancer Res. 64, 3361-3364 https://doi.org/10.1158/0008-5472.CAN-04-0079
  32. Sylla, B.S., Hung, S.C., Davidson, D.M., Hatzivassiliou, E., Malinin, N.L., Wallach, D., Gilmore, T.D., Kieff, E., and Mosialos, G. (1998). Epstein-Barr virus-transforming protein latent infection membrane protein 1 activates transcription factor NF-kappaB through a pathway that includes the NF-kappaB-inducing kinase and the IkappaB kinases IKKalpha and IKKbeta. Proc. Natl. Acad. Sci. USA 95, 10106-10111 https://doi.org/10.1073/pnas.95.17.10106
  33. Toda, T., and Sugimoto, M. (2003). Proteome analysis of Epstein- Barr virus-transformed B-lymphoblasts and the proteome database. J. Chromatography B. 787, 197-206 https://doi.org/10.1016/S1570-0232(02)00495-6
  34. Yoo, Y.K., Ke, X., Hong, S., Jang, H.Y., Park, K., Kim, S., Ahn, T., Lee, Y.D., Song, O., Rho, N.Y., et al. (2006). Fine-scale map of encyclopedia of DNA elements regions in the Korean population. Genetics 174, 491-497 https://doi.org/10.1534/genetics.105.052225
  35. Young, L.S., and Rickinson, A.B. (2004). Epstein-Barr virus: 40 years on. Nat. Rev. Cancer 4, 757-768 https://doi.org/10.1038/nrc1452
  36. Zhang, L., Hong, K., Zhang, J., and Pagano, J.S. (2004). Multiple signal transducers and activators of transcription are induced by EBV LMP-1. Virology 323, 141-152 https://doi.org/10.1016/j.virol.2004.03.007
  37. Zhao, B., Maruo, S., Cooper, A., Chase, M.R., Johannsen, E., Kieff, E., and Cahir-McFarland, E. (2006). RNAs induced by Epstein-Barr virus nuclear antigen 2 in lymphoblastoid cell lines. Proc. Natl. Acad. Sci. USA 103, 1900-1905 https://doi.org/10.1073/pnas.0510612103

Cited by

  1. Expression phenotype changes of EBV-transformed lymphoblastoid cell lines during long-term subculture and its clinical significance vol.43, pp.4, 2009, https://doi.org/10.1111/j.1365-2184.2010.00687.x
  2. Association between Epstein-Barr virus infection and chemoresistance to docetaxel in gastric carcinoma vol.32, pp.2, 2009, https://doi.org/10.1007/s10059-011-0066-y
  3. Human lymphoblastoid cell lines: a goldmine for the biobankomics era vol.12, pp.6, 2009, https://doi.org/10.2217/pgs.11.24
  4. MicroRNA signatures associated with immortalization of EBV‐transformed lymphoblastoid cell lines and their clinical traits vol.44, pp.1, 2011, https://doi.org/10.1111/j.1365-2184.2010.00717.x
  5. National Biobank of Korea: Quality control Programs of Collected-human Biospecimens vol.3, pp.3, 2009, https://doi.org/10.1016/j.phrp.2012.07.007
  6. Genotype instability during long-term subculture of lymphoblastoid cell lines vol.58, pp.1, 2009, https://doi.org/10.1038/jhg.2012.123
  7. hTERT Inhibition Triggers Epstein–Barr Virus Lytic Cycle and Apoptosis in Immortalized and Transformed B Cells: A Basis for New Therapies vol.19, pp.8, 2009, https://doi.org/10.1158/1078-0432.ccr-12-2537
  8. Epstein-Barr virus and telomerase: from cell immortalization to therapy vol.9, pp.1, 2009, https://doi.org/10.1186/1750-9378-9-8
  9. Genetic factors underlying discordance in chromatin accessibility between monozygotic twins vol.15, pp.5, 2014, https://doi.org/10.1186/gb-2014-15-5-r72
  10. Cross talk between EBV and telomerase: the role of TERT and NOTCH2 in the switch of latent/lytic cycle of the virus vol.6, pp.None, 2015, https://doi.org/10.1038/cddis.2015.145
  11. Telomerase Activity Impacts on Epstein-Barr Virus Infection of AGS Cells vol.10, pp.4, 2009, https://doi.org/10.1371/journal.pone.0123645
  12. Assays for Qualification and Quality Stratification of Clinical Biospecimens Used in Research: A Technical Report from the ISBER Biospecimen Science Working Group vol.14, pp.5, 2016, https://doi.org/10.1089/bio.2016.0018
  13. Regulation of Telomere Homeostasis during Epstein-Barr virus Infection and Immortalization vol.9, pp.8, 2009, https://doi.org/10.3390/v9080217
  14. Extra-telomeric functions of telomerase in the pathogenesis of Epstein-Barr virus-driven B-cell malignancies and potential therapeutic implications vol.13, pp.1, 2018, https://doi.org/10.1186/s13027-018-0186-5
  15. Propagation of EBV-driven Lymphomatous Transformation of Peripheral Blood B Cells by Immunomodulators and Biologics Used in the Treatment of Inflammatory Bowel Disease vol.26, pp.9, 2009, https://doi.org/10.1093/ibd/izaa065
  16. The interaction of Multiple Sclerosis risk loci with Epstein-Barr virus phenotypes implicates the virus in pathogenesis vol.10, pp.None, 2009, https://doi.org/10.1038/s41598-019-55850-z