DOI QR코드

DOI QR Code

The Arabidopsis AtLEC Gene Encoding a Lectin-like Protein Is Up-Regulated by Multiple Stimuli Including Developmental Signal, Wounding, Jasmonate, Ethylene, and Chitin Elicitor

  • Lyou, Seoung Hyun (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Park, Hyon Jin (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Jung, Choonkyun (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Sohn, Hwang Bae (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Lee, Garam (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Kim, Chung Ho (Department of Food and Nutrition, Seowon University) ;
  • Kim, Minkyun (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Choi, Yang Do (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Cheong, Jong-Joo (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University)
  • 투고 : 2008.09.04
  • 심사 : 2008.10.13
  • 발행 : 2009.01.31

초록

The Arabidopsis gene AtLEC (At3g15356) gene encodes a putative 30-kDa protein with a legume lectin-like domain. Likely to classic legume lectin family of genes, AtLEC is expressed in rosette leaves, primary inflorescences, and roots, as observed in Northern blot analysis. The accumulation of AtLEC transcript is induced very rapidly, within 30 min, by chitin, a fungal wall-derived oligosaccharide elictor of the plant defense response. Transgenic Arabidopsis carrying an AtLEC promoter-driven ${\beta}$-glucuronidase (GUS) construct exhibited GUS activity in the leaf veins, secondary inflorescences, carpel heads, and silique receptacles, in which no expression could be seen in Northern blot analysis. This observation suggests that AtLEC expression is induced transiently and locally during developmental processes in the absence of an external signal such as chitin. In addition, mechanically wounded sites showed strong GUS activity, indicating that the AtLEC promoter responds to jasmonate. Indeed, methyl jasmonate and ethylene exposure induced AtLEC expression within 3-6 h. Thus, the gene appears to play a role in the jasmonate-/ethylene-responsive, in addition to the chitin-elicited, defense responses. However, chitin-induced AtLEC expression was also observed in jasmonate-insensitive (coi1) and ethylene-insensitive (etr1-1) Arabidopsis mutants. Thus, it appears that chitin promotes AtLEC expression via a jasmonate- and/or ethylene-independent pathway.

키워드

과제정보

연구 과제 주관 기관 : Crop Functional Genomics Center, Korea Ministry of Science and Technology, Ministy of Euducation, Korea Research Foundation

참고문헌

  1. Anderson, J.P., Badruzsaufari, E., Schenk, P.M., Manners, J.M., Desmond, O.J., Ehlert, C.E., Maclean, D.J., Ebert, P.R., and Kazan, K. (2004). Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16, 3460-3479 https://doi.org/10.1105/tpc.104.025833
  2. Andresen, I., Becker, W., Schlüter, K., Burges, J., Parthier, B., and Apel, K. (1992). The identification of leaf thionin as one of the main jasmonate-induced proteins of barley (Hordeum vulagre). Plant Mol. Biol. 19, 193-204 https://doi.org/10.1007/BF00027341
  3. Becker, W., and Apel, K. (1992). Isolation and characterization of a cDNA clone encoding a novel jasmonate-induced protein of barley (Hordeum vulgare L.). Plant Mol. Biol. 19, 1065-1067 https://doi.org/10.1007/BF00040538
  4. Benavente, L.M., and Alonso, J.M. (2006). Molecular mechanisms of ethylene signaling in Arabidopsis. Mol. BioSyst. 2, 165-173 https://doi.org/10.1039/b513874d
  5. Berrocal-Lobo, M., Molina, A., and Solano, R. (2002). Constitutive expression of ETHYLENE-RESPONSIVE-FACTOR1, in Aravidopsis confers resistance to several necrotrophic fungi. Plant J. 29, 23-32 https://doi.org/10.1046/j.1365-313x.2002.01191.x
  6. Bezerra, G.A., Oliveira, T.M., Moreno, F.B.M.B., De Souza, E.P., Da Rocha, B.A.M., Benevides, R.G., Delatorre, P., De Azevedo Jr., W.F., and Cavada, B.S. (2007). Structural analysis of Canavalia maritima and Canavalia gladiata lectins complexed with different dimannosides: New insights into the understanding of the structure-biological activity relationship in legume lectins. J. Struct. Biol. 160, 168-176 https://doi.org/10.1016/j.jsb.2007.07.012
  7. Binder, B.M., Walker, J.M., Gagne, J.M., Emborg, T.J., Hemmann, G., Bleecker, A.B., and Vierstra, R.D. (2007). The Arabidopsis EIN3 binding F-box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling. Plant Cell 19, 509-523 https://doi.org/10.1105/tpc.106.048140
  8. Bleecker, A.B., and Patterson, S.E. (1997). Last exit: senescence, abscission, and meristem arrest in Arabidopsis. Plant Cell 9, 1169-1179 https://doi.org/10.1105/tpc.9.7.1169
  9. Campbell, E.J., Schenk, P.M., Kazan, K., Penninckx, I.A.M.A., Anderson, J.P., Maclean, D.J., Cammue, B.P.A., Ebert, P.R., and Manners, J.M. (2003). Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis. Plant Physiol. 133, 1271-1284 https://doi.org/10.1104/pp.103.024182
  10. Carpenter, C.D., and Simon, A.E. (1998). Preparation of RNA. Methods Mol. Biol. 82, 85-89
  11. Chandra, N.R., Kumar, N., Jeyakani, J., Singh, D.D., Gowda, S.B., and Prathima, M.N. (2006) Lectindb: a plant lectin database. Glycobiology. 16, 938-946 https://doi.org/10.1093/glycob/cwl012
  12. Chang, C., Kwok, S.F., Bleecker, A.B., and Meyerowitz, E.M. (1993). Arabidopsis ethylene-response gene bqoN: Similarity of product to two-component regulators. Science 262, 539-544 https://doi.org/10.1126/science.8211181
  13. Chen, Y., Peumans, W.J., Hause, B., Bras, J., Kumar, M., Proost, P., Barre, A., Rougé, P., and Van Damme, E.J.M. (2002). Jasmonic acid methyl ester induces the synthesis of a cytoplasmic/nuclear chito-oligosaccharide binding lectin in tobacco leaves. FASEB J. 16, 905-907 https://doi.org/10.1096/fj.01-0598fje
  14. Chini, A., Fonseca, S., Fernandez, G., Adie, B., Chico, J.M., Lorenzo, O., Garcia-Casado, G., Lopez-Vidriero, I., Lozano, F.M., Ponce, M.R., et al. (2007). The JAZ family of repressors is the missing link in jasmonate signaling. Nature 448, 666-671 https://doi.org/10.1038/nature06006
  15. Chrispeels, M.J., and Raikhel, N.V. (1991) Lectins, lectin genes, and their role in plant defense. Plant Cell 3, 1-9 https://doi.org/10.1105/tpc.3.1.1
  16. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743 https://doi.org/10.1046/j.1365-313x.1998.00343.x
  17. Coupe, S.A., Taylor, J.E., and Roberts, J.A. (1997). Temporal and spatial expression of mRNAs encoding pathogenesis-related proteins during ethylene-promoted leaflet abscission in Sambucus nigra. Plant Cell Environ. 20, 1517-1524 https://doi.org/10.1046/j.1365-3040.1997.d01-54.x
  18. Creelman, R.A., and Mullet, J.E. (1995). Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc. Natl. Acad. Sci. USA 92, 4114-4119 https://doi.org/10.1073/pnas.92.10.4114
  19. De Souza Filho, G.A., Ferreira, B.S., Dias, J.M., Queiroz, K.S., Branco, A.T., Bressan-Smith, R.E., Oliveira, J.G., and Garcia, A.B. (2003). Accumulation of SALT protein in rice plants as a response to environmental stresses. Plant Sci. 164, 623-628 https://doi.org/10.1016/S0168-9452(03)00014-1
  20. Del Campillo, E., and Lewis, L.N. (1992). Identification and kinetics of accumulation of proteins induced by ethylene in bean abscission zones. Plant Physiol. 98, 955-961 https://doi.org/10.1104/pp.98.3.955
  21. Doares, S.H., Syrovelts, T., Weiler, E.W., and Ryan, C.A. (1995). Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc. Natl. Acad. Sci. USA 93, 4095-4098 https://doi.org/10.1073/pnas.92.10.4095
  22. Ebel, J. (1998). Oligoglucoside elicitor-mediated activation of plant defense. Bioessays 20, 569-576 https://doi.org/10.1002/(SICI)1521-1878(199807)20:7<569::AID-BIES8>3.0.CO;2-F
  23. Farmer, E.E., and Ryan, C.A. (1992). Octadecanoid jasmonate precursors activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4, 129-134 https://doi.org/10.1105/tpc.4.2.129
  24. Feys, B.J.F., Benedetti, C.E., Penfold, C.N., and Turner, J.G. (1994). Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6, 751-759 https://doi.org/10.1105/tpc.6.5.751
  25. Guo, H., and Ecker, J.R. (2003). Plant responses to ethylene gas are mediated by $SCF^{EBF1/EBF2}$-dependent proteolysis of EIN3 transcription factor. Cell 115, 667-677 https://doi.org/10.1016/S0092-8674(03)00969-3
  26. Hahn, M.G. (1996) Microbial elicitors and their receptors in plants. Annu. Rev. Phytopathol. 34, 387-412 https://doi.org/10.1146/annurev.phyto.34.1.387
  27. Herve, C., Dabos, P., Galaud, J.-P., Rouge, P., and Lescure, B. (1996). Characterization of an Arabidopsis thaliana gene that defines a new class of putative plant receptor kinases with an extracellular lectin-like domain. J. Mol. Biol. 258, 778-788 https://doi.org/10.1006/jmbi.1996.0286
  28. Herve, C., Serres, J., Dabos, P., Canut, H., Barre, A., Rouge, P., and Lescure, B. (1999). Characterization of the Arabidopsis lecRK-a genes: members of a superfamily encoding putative receptors with an extracellular domain homologous to legume lectins. Plant Mol. Biol. 39, 671-682 https://doi.org/10.1023/A:1006136701595
  29. Ito, Y., Kaku, H., and Shibuya, N. (1997). Identification of a highaffinity binding protein for k-acetylchitooligosaccharide elicitor in the plasma membrane of suspension-cultured rice cells by affinity labeling. Plant J. 12, 347-356 https://doi.org/10.1046/j.1365-313X.1997.12020347.x
  30. Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. (1987). GUS fusions: $\beta$-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901-3907
  31. Jung, C., Lyou, S.H., Yeu, S.Y., Kim, M.A., Rhee, S., Kim, M., Lee, J.S., Choi, Y.D., and Cheong, J.-J. (2007a). Microarray-based screening of jasmonate-responsive genes in Arbidopsis thaliana. Plant Cell Rep. 26, 1053-1063 https://doi.org/10.1007/s00299-007-0311-1
  32. Jung, C., Yeu, S.Y., Koo, Y.J., Kim, M., Choi, Y.D., and Cheong, J.- J. (2007b). Transcript profile of transgenic Arabidopsis constitutively producing methyl jasmonate. J. Plant Biol. 50, 12-17 https://doi.org/10.1007/BF03030594
  33. Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E., and Shibuya, N. (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc. Natl. Acad. Sci. USA 103, 11086-11091 https://doi.org/10.1073/pnas.0508882103
  34. Komath, S.S., Kavitha, M., and Swamy, M.J. (2006). Beyond carbohydrate binding: new directions in plant lectin research. Org. Biomol. Chem. 4, 973-988 https://doi.org/10.1039/b515446d
  35. Lannoo, N., Vandenborre, G., Miersch, O., Smagghe, G., Wasternack, C., Peumans, W.J., and Van Damme, E.J.M. (2007). The jasmonate-induced expression of the Nicotiana tabacum leaf lectin. Plant Cell Physiol. 48, 1207-1218 https://doi.org/10.1093/pcp/pcm090
  36. Libault, M., Wan, J., Czechowski, T., Udvardi, M., and Stacey, G. (2007). Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor. Mol. Pant-Microbe Interact. 20, 900-911 https://doi.org/10.1094/MPMI-20-8-0900
  37. Lim, M.A.G., Kelly, P., Sexton, R., and Trewavas, A.J. (1987). Identification of chitinase mRNA in abscission zones from bean. Plant Cell Environ. 10, 741-746 https://doi.org/10.1111/j.1365-3040.1987.tb01112.x
  38. Moreno, F.B.M.B., De Oliveira, T.M., Martil, D.E., Vicoti, M.M., Bezerra, G.A., Abrego, J.R.B., Cavada, B.S., and De Azevedo Jr., W.F. (2008). Identification of a new quaternary association for legume lectins. J. Struct. Biol. 161, 133-143 https://doi.org/10.1016/j.jsb.2007.10.002
  39. Mueller, J.M., Brodschelm, W., Spannagl, E., and Zenk, M.H. (1993). Signaling in the elicitation process is mediated through the octadecanoid pathway leading to jasmonic acid. Proc. Natl. Acad. Sci. USA 90, 7490-7494 https://doi.org/10.1073/pnas.90.16.7490
  40. Penninckx, I.A.M.A., Eggermont, K., Terras, F.R., Thomma, B.P.H.J., De Samblanx, G.W., Buchala, A., MEtraux, J.-P.,Manners, J.M., and Broekaert, W.F. (1996). Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8, 2309-2323 https://doi.org/10.2307/3870470
  41. Penninckx, I.A.M.A., Thomma, B.P.H.J., Buchala, A., Métraux, J.-P., and Broekaert, W.F. (1998). Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10, 2103-2113 https://doi.org/10.2307/3870787
  42. Peumans, W.J., Annick, B., Qiang, H., Pierre, R., and Van Damme, E.J.M. (2000). Higher plants developed structurally different motifsto recognize foreign glycans. Trends Glycosci. Glycotechnol. 12, 83-101 https://doi.org/10.4052/tigg.12.83
  43. Potuschak, T., Lechner, E., Parmentier, Y., Yanagisawa, S., Grava, S., Koncz, C., and Genschik, P. (2003). EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115, 679-689 https://doi.org/10.1016/S0092-8674(03)00968-1
  44. Ramonell, K.M., Zhang, B., Ewing, R.M., Chen, Y., Xu, D., Stacey, G., and Somerville, S. (2002). Microarray Analysis of Chitin Elictation in Arabiolopis thaliana. Mol. Plant Pathol. 3, 301-311 https://doi.org/10.1046/j.1364-3703.2002.00123.x
  45. Roberts, J.A., Elliott, K.A., and Gonzalez-Carranza, Z.H. (2002). Abscission, dehiscence, and other cell separation processes. Annu. Rev. Plant Biol. 53, 131-158 https://doi.org/10.1146/annurev.arplant.53.092701.180236
  46. Rojo, E., Leon, J., and Sanchez-Serrano, J.J. (1999). Cross-talk between wound signalling pathways determines local versus systemic gene expression in Arabidopsis thaliana. Plant J. 20, 135-142 https://doi.org/10.1046/j.1365-313x.1999.00570.x
  47. Rudiger, H., and Gabius, H.-J. (2001). Plant lectins: Occurrence, biochemistry, functions and applications. Glycoconjugate J. 18, 589-613 https://doi.org/10.1023/A:1020687518999
  48. Saniewski, M., and Wegrzynowicz-Lesiak, E. (1995). Methyl jasmonate- induced leaf abscission in Kalanchoe blossfeldiana. Acta Hortic. 394, 315-324
  49. Saniewski, M., Ueda, J., and Miyamoto, K. (2000). Methyl jasmonate induces the formation of secondary abscission zone in stem of Bryophyllum calycinum Salisb. Acta Physiol. Plant. 22, 17-23 https://doi.org/10.1007/s11738-000-0003-8
  50. Schaller, G.E., and Bleecker, A.B. (1995). Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 270, 1809-1811 https://doi.org/10.1126/science.270.5243.1809
  51. Schenk, P.M., Kazan, K., Wilson, I., Anderson, J.P., Richmond, T., Somerville, S.C., and Manners, J.M. (2000). Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 97, 11655-11660 https://doi.org/10.1073/pnas.97.21.11655
  52. Sharon, N., and Lis, H. (2004). History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14, 53R-62R https://doi.org/10.1093/glycob/cwh122
  53. Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, S.Y., Howe, G.A., and Browse, J. (2007). JAZ repressor proteins are targets of the $SCF^{COI1}$ complex during jasmonate signaling. Nature 448, 661-665 https://doi.org/10.1038/nature05960
  54. Ueda, J., Miyamoto, K., and Hashimoto, M. (1996). Jasmonates promote abscission in bean petiole explants: Its relationship to the metabolism of cell wall polysaccharides and cellulose activity. J. Plant Growth Regul. 15, 189-195 https://doi.org/10.1007/BF00190583
  55. Van Damme, E.J.M., Lannoo, N., Fouquaert, E., and Peumans, W.J. (2004). The identification of inducible cytoplasmic/nuclear carbohydrate-binding proteins urges to develop novel concepts about the role of plant lectins. Glycoconjugate J. 20, 449-460
  56. Wasternack, C., and Hause, B. (2002). Jasmonates and octadecanoids: signals in plant stress responses and development. Progr. Nucl. Acid Res. Mol. Biol. 72, 165-221 https://doi.org/10.1016/S0079-6603(02)72070-9
  57. Xie, D.-X., Feys, B.F., James, S., Nieto-Rostro, M., and Turner, J.G. (1998). `lfN: An Arabidopsis gene required for jasmonateregulated defense and fertility. Science 280, 1091-1094 https://doi.org/10.1126/science.280.5366.1091
  58. Xu, L., Liu, F., Lechner, E., Genschik, P., Crosby, W.L., Ma, H., Peng, W., Huang, D., and Xie, D. (2002). The $SCF^{COI1}$ ubiquitinligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14, 1919-1935 https://doi.org/10.1105/tpc.003368
  59. Zhang, W., Peumans, W.J., Barre, A., Houles-Astoul, C., Rovira, P., Rouge, P., Proost, P., Truffa-Bachi, P., Jalali, A.A.H., and Van Damme, E.J.M. (2000). Isolation and characterization of a jacalin-related mannose-binding lectin from salt-stressed rice (Oryza sativa) plants. Planta 210, 970-978 https://doi.org/10.1007/s004250050705
  60. Zhang, B., Ramonell, K., Somerville, S., and Stacey, G. (2002). Characterization of early, chitin-induced gene expression in Arabidopsis. Mol. Plant-Microbe Interact. 15, 963-970 https://doi.org/10.1094/MPMI.2002.15.9.963

피인용 문헌

  1. Molecular cloning and functional expression of chitinase-encoding cDNA from the cabbage moth, Mamestra brassicae vol.33, pp.5, 2009, https://doi.org/10.1007/s10059-012-2133-4
  2. A Salicylic Acid-Induced Lectin-Like Protein Plays a Positive Role in the Effector-Triggered Immunity Response of Arabidopsis thaliana to Pseudomonas syringae Avr-Rpm1 vol.26, pp.12, 2013, https://doi.org/10.1094/mpmi-02-13-0044-r
  3. Contrasting Roles of the Apoplastic Aspartyl Protease APOPLASTIC, ENHANCED DISEASE SUSCEPTIBILITY1-DEPENDENT1 and LEGUME LECTIN-LIKE PROTEIN1 in Arabidopsis Systemic Acquired Resistance, vol.165, pp.2, 2009, https://doi.org/10.1104/pp.114.239665
  4. Plant Lectins and Lectin Receptor-Like Kinases: How Do They Sense the Outside? vol.18, pp.6, 2009, https://doi.org/10.3390/ijms18061164
  5. Gene networks underlying the early regulation of Paraburkholderia phytofirmans PsJN induced systemic resistance in Arabidopsis vol.14, pp.8, 2009, https://doi.org/10.1371/journal.pone.0221358
  6. Systemic acquired resistance networks amplify airborne defense cues vol.10, pp.1, 2009, https://doi.org/10.1038/s41467-019-11798-2
  7. An Integrative Study Showing the Adaptation to Sub-Optimal Growth Conditions of Natural Populations of Arabidopsis thaliana : A Focus on Cell Wall Changes vol.9, pp.10, 2009, https://doi.org/10.3390/cells9102249