DOI QR코드

DOI QR Code

Gene Expression Profiling of Liver and Mammary Tissues of Lactating Dairy Cows

  • Baik, M. (Major in Molecular Biotechnology, Biotechnology Research Institute) ;
  • Etchebarne, B.E. (Department of Animal Science, Michigan State University) ;
  • Bong, J. (Major in Molecular Biotechnology, Biotechnology Research Institute) ;
  • VandeHaar, M.J. (Department of Animal Science, Michigan State University)
  • Received : 2009.01.22
  • Accepted : 2009.03.22
  • Published : 2009.06.01

Abstract

Gene expression profiling is a useful tool for identifying critical genes and pathways in metabolism. The objective of this study was to determine the major differences in the expression of genes associated with metabolism and metabolic regulation in liver and mammary tissues of lactating cows. We used the Michigan State University bovine metabolism (BMET) microarray; previously, we have designed a bovine metabolism-focused microarray containing known genes of metabolic interest using publicly available genomic internet database resources. This is a high-density array of 70mer oligonucleotides representing 2,349 bovine genes. The expression of 922 genes was different at p<0.05, and 398 genes (17%) were differentially expressed by two-fold or more with 222 higher in liver and 176 higher in mammary tissue. Gene ontology categories with a high percentage of genes more highly expressed in liver than mammary tissues included carbohydrate metabolism (glycolysis, glucoenogenesis, propanoate metabolism, butanoate metabolism, electron carrier and donor activity), lipid metabolism (fatty acid oxidation, chylomicron/lipid transport, bile acid metabolism, cholesterol metabolism, steroid metabolism, ketone body formation), and amino acid/nitrogen metabolism (amino acid biosynthetic process, amino acid catabolic process, urea cycle, and glutathione metabolic process). Categories with more genes highly expressed in mammary than liver tissue included amino acid and sugar transporters and MAPK, Wnt, and JAK-STAT signaling pathways. Real-time PCR analysis showed consistent results with those of microarray analysis for all 12 genes tested. In conclusion, microarray analyses clearly identified differential gene expression profiles between hepatic and mammary tissues that are consistent with the differences in metabolism of these two tissues. This study enables understanding of the molecular basis of metabolic adaptation of the liver and mammary gland during lactation in bovine species.

Keywords

References

  1. Adams, T. E., J. A. Hansen, R. Starr, N. A. Nicola, D. J. Hilton and N. Billestrup. 1998. Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling. J. Biol. Chem. 16:1285-1287 https://doi.org/10.1074/jbc.273.3.1285
  2. Binelli, M., W. K. Vanderkooi, L. T. Chapin, M. J. Vandehaar, J. D. Turner, W. M. Moseley and H. A. Tucker. 1995. Comparison of growth hormone-releasing factor and somatotropin: body growth and lactation of primiparous cows. J. Dairy Sci. 78:2129-2139 https://doi.org/10.3168/jds.S0022-0302(95)76840-0
  3. Bionaz, M. and J. J. Loor. 2008. Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics 31:366 https://doi.org/10.1186/1471-2164-9-366
  4. Bionaz, M. and J. J. Loor. 2008. ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation. J. Nutr. 138:1019-1024
  5. Brennan, K. R. and A. M. Brown. 2004. Wnt proteins in mammary development and cancer. J. Mammary Gland Biol. Neoplasia 9:119-131 https://doi.org/10.1023/B:JOMG.0000037157.94207.33
  6. Chmurzynska, A. 2006. The multigene family of fatty acidbinding proteins (FABPs): function, structure and polymorphism. J. Appl. Genet. 47:39-48 https://doi.org/10.1007/BF03194597
  7. Dahlquist, K. D., N. Salomonis, K. Vranizan, S. C. Lawlor and B. R. Conklin. 2002. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat. Genet. 31:19-20 https://doi.org/10.1038/ng0502-19
  8. Doniger, S. W., N. Salomonis, K. D. Dahlquist, K. Vranizan, S. C. Lawlor and B. R. Conklin. 2003. MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol. 4:R7 https://doi.org/10.1186/gb-2003-4-1-r7
  9. Etchebarne, B. E., W. Nobis, M. S. Allen, and M. J. VandeHaar. 2004. Design of a bovine metabolism oligonucleotide gene array. J. Anim. Feed Sci. 13(Suppl. 1):385-388
  10. Evarts, J. L., J. J. Rasweiler, R. R. Behringer, L. Hennighausen and G. W. Robinson. 2004. A morphological and immunohistochemical comparison of mammary tissues from the short-tailed fruit bat (Carollia perspicillata) and the mouse. Biol. Reprod.70:1573-1579 https://doi.org/10.1095/biolreprod.103.022988
  11. Finucane, K. A., T. B. McFadden, J. P. Bond, J. J. Kennelly and F. Q. Zhao. 2008. Onset of lactation in the bovine mammary gland: gene expression profiling indicates a strong inhibition of gene expression in cell proliferation. Funct. Integr. Genomics 8:251-264 https://doi.org/10.1007/s10142-008-0074-y
  12. Fukumoto, H., S. Seino, H. Imura, Y. Seino, R. L. Eddy, Y. Fukushima, M. G. Byers, T. B. Shows and G. I. Bell. 1988. Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein. Proc. Natl. Acad. Sci. USA 85:5434-5438 https://doi.org/10.1073/pnas.85.15.5434
  13. Furuhashi, M. and G. S. Hotamisligil. 2008. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov. 7:489-503 https://doi.org/10.1038/nrd2589
  14. Hartwell, J. R., M. J. Cecava, B. Miller and S. S. Donkin. 1999. Rumen protected choline and dietary protein for transition cows. J. Dairy Sci. 82 (Suppl. 1):125(Abstr.)
  15. Heid, H. W., M. Schnolzer and T. W. Keenan. 1996. Adipocyte differentiation-related protein is secreted into milk as a constituent of milk lipid globule membrane. Biochem J. 320(Pt 3):1025-1030
  16. Hirsch, D., A. Stahl and H. F. Lodish. 1998. A family of fatty acid transporters conserved from mycobacterium to man. Proc. Natl. Acad. Sci. USA 95:8625-8629 https://doi.org/10.1073/pnas.95.15.8625
  17. Hod, Y., J. S. Cook, S. L. Weldon, J. M. Short, A. Wynshaw-Boris and R. W. Hanson. 1986. Differential expression of the genes for the mitochondrial and cytosolic forms of phosphoenolpyruvate carboxykinase. Ann. NY Acad. Sci. 478:31-45 https://doi.org/10.1111/j.1749-6632.1986.tb15519.x
  18. Hood, R. L., E. H. Thompson and C. E. Allen. 1972. The role of acetate, propionate and glucose as substrates for lipogenesis in bovine tissues. Int. J. Biochem. 3:598-606 https://doi.org/10.1016/0020-711X(72)90018-3
  19. Hunt, C. R., J. H. Ro, D. E. Dobson, H. Y. Min and B. M. Spiegelman. 1986. Adipocyte P2 gene: developmental expression and homology of 5′-flanking sequences among fat cell-specific genes. Proc. Natl. Acad. Sci. USA 83:3786-3790 https://doi.org/10.1073/pnas.83.11.3786
  20. Kanai, Y. and M. A. Hediger. 2004. The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflugers Arch. 447:469-479 https://doi.org/10.1007/s00424-003-1146-4
  21. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408 https://doi.org/10.1006/meth.2001.1262
  22. Martin-Hidalgo, A., L. Huerta, N. Alvarez, G. Alegria, M. del Val Toledo and E. Herrera. 2005. Expression, activity, and localization of hormone-sensitive lipase in rat mammary gland during pregnancy and lactation. J. Lipid Res. 46:658-668 https://doi.org/10.1194/jlr.M400370-JLR200
  23. Miyoshi, K., J. M. Shillingford, G. H. Smith, S. L. Grimm, K. U. Wagner, T. Oka, J. M. Rosen, G. W. Robinson and L. Hennighausen. 2001. Signal transducer and activator of transcription (Stat) 5 controls the proliferation and differentiation of mammary alveolar epithelium. J. Cell Biol. 155:531-542 https://doi.org/10.1083/jcb.200107065
  24. Moore, J. H. and W. W. Christie. 1979. Lipid metabolism in the mammary gland of ruminant animals. Prog. Lipid Res. 17:347-395 https://doi.org/10.1016/0079-6832(79)90012-0
  25. Muscher, A., G. Breves and K. Huber. 2008. Modulation of apical Na/P(i) cotransporter type IIb expression in epithelial cells of goat mammary glands. J. Anim. Physiol. Anim. Nutr (Berl). (Epub ahead of print)
  26. Pfaffl, M. W., S. L. Wittmann, H. H. Meyer and R. M. Bruckmaier. 2003. Gene expression of immunologically important factors in blood cells, milk cells, and mammary tissue of cows. J. Dairy Sci. 86:538-545 https://doi.org/10.3168/jds.S0022-0302(03)73632-7
  27. Pulverer, B. J., J. M. Kyriakis, J. Avruch, E. Nikolakaki and J. R. Woodgett. 1991. Phosphorylation of c-jun mediated by MAP kinases. Nature 17:670-674 https://doi.org/10.1038/353670a0
  28. Rudolph, M. C., J. L. McManaman, T. Phang, T. Russell, D. J. Kominsky, N. J. Serkova, T. Stein, S. M. Anderson and M. C. Neville. 2007. Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine. Physiol. Genomics 28:323-336 https://doi.org/10.1152/physiolgenomics.00020.2006
  29. Shillingford, J. M., D. T. Calvert, R. B. Beechey and D. B. Shennan. 1996. Phosphate transport via Na-Pi cotransport and anion exchange in lactating rat mammary tissue. Exp. Physiol. 81: 273-284
  30. Smith, S. B. and R. L. Prior. 1986. Comparisons of lipogenesis and glucose metabolism between ovine and bovine adipose tissues. J. Nutr. 116:1279-1286
  31. Stahl, A. 2004. A current review of fatty acid transport proteins (SLC27). Pflugers Arch. 447:722-727 https://doi.org/10.1007/s00424-003-1106-z
  32. Stover, P. J. 2004. Nutritional genomics. Physiol. Genomics 16:161-165 https://doi.org/10.1152/physiolgenomics.00204.2003
  33. Subbaramaiah, K., R. Benezra, C. Hudis and A. J. Dannenberg. 2008. Cyclooxygenase-2-derived prostaglandin E2 stimulates Id-1 transcription. J. Biol. Chem. 5:33955-33968 https://doi.org/10.1074/jbc.M805490200
  34. Turashvili, G., J. Bouchal, G. Burkadze and Z. Kolar. 2006. Wnt signaling pathway in mammary gland development and carcinogenesis. Pathobiology 73:213-223 https://doi.org/10.1159/000098207
  35. Vernon, R. G., A. Faulkner, E. Finley, H. Pollock and E. Taylor. 1987. Enzymes of glucose and fatty acid metabolism of liver, kidney, skeletal muscle, adipose tissue and mammary gland of lactating and non-lactating sheep. J. Anim. Sci. 64:1395-1411
  36. Verrey, F., E. I. Closs, C. A. Wagner, M. Palacin, H. Endou and Y. Kanai. 2004. CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch. 447:532-542 https://doi.org/10.1007/s00424-003-1086-z
  37. Wall, E. H., T. L. Auchtung-Montgomery, G. E. Dahl and T. B. McFadden. 2005. Short communication: Short day photoperiod during the dry period decreases expression of suppressors of cytokine signaling in the mammary gland of dairy cows. J. Dairy Sci. 88:3145-3148 https://doi.org/10.3168/jds.S0022-0302(05)72997-0
  38. Weldon, S. L., A. Rando, A. S. Matathias, Y. Hod, P. A. Kalonick, A. Savon, J. S. Cook and R. W. Hanson. 1990. Mitochondrial phosphoenolpyruvate carboxykinase from the chicken. J. Biol. Chem. 265:7308-7317
  39. Winkelman, L. A., M. C. Lucy, T. H. Elsasser, J. L. Pate and C. K. Reynolds. 2008. Short communication: suppressor of cytokine signaling-2 mRNA increases after parturition in the liver of dairy cows. J. Dairy Sci. 91:1080-1086 https://doi.org/10.3168/jds.2007-0433
  40. Xu, C., Z. Wang, G. Liu, X. Li, G. Xie and H. Zhang. 2008. Metabolic characteristic of the liver of dairy cows during ketosis based on comparative proteomics. Asian-Aust. J. Anim. Sci. 21:1003-1010
  41. Yamashita, A., H. Nakanishi, H. Suzuki, R. Kamata, K. Tanaka, K. Waku and T. Sugiura. 2007. Topology of acyltransferase motifs and substrate specificity and accessibility in 1-acyl-sn-glycero-3-phosphate acyltransferase 1. Biochim. Biophys. Acta. 1771:1202-1215 https://doi.org/10.1016/j.bbalip.2007.07.002
  42. Zhao, F. Q. and A. F. Keating. 2007. Expression and regulation of glucose transporters in the bovine mammary gland. J. Dairy Sci. 90 Suppl 1:E76-E86

Cited by

  1. How Selected Tissues of Lactating Holstein Cows Respond to Dietary Polyunsaturated Fatty Acid Supplementation vol.48, pp.4, 2013, https://doi.org/10.1007/s11745-012-3737-3
  2. The Functional and Molecular Entities Underlying Amino Acid and Peptide Transport By the Mammary Gland Under Different Physiological And Pathological Conditions vol.19, pp.1, 2014, https://doi.org/10.1007/s10911-013-9305-5
  3. An Approach to Identify SNPs in the Gene Encoding Acetyl-CoA Acetyltransferase-2 (ACAT-2) and Their Proposed Role in Metabolic Processes in Pig vol.9, pp.7, 2014, https://doi.org/10.1371/journal.pone.0102432
  4. Food Deprivation Affects the miRNome in the Lactating Goat Mammary Gland vol.10, pp.10, 2015, https://doi.org/10.1371/journal.pone.0140111
  5. Genome-association analysis of Korean Holstein milk traits using genomic estimated breeding value vol.30, pp.3, 2015, https://doi.org/10.5713/ajas.15.0608
  6. Tissues, Metabolic Pathways and Genes of Key Importance in Lactating Dairy Cattle vol.4, pp.2, 2016, https://doi.org/10.1007/s40362-016-0040-3
  7. Transcriptome changes favoring intramuscular fat deposition in the longissimus muscle following castration of bulls1 vol.91, pp.10, 2013, https://doi.org/10.2527/jas.2012-6089
  8. Transcriptomic profiles of the bovine mammary gland during lactation and the dry period vol.18, pp.2, 2018, https://doi.org/10.1007/s10142-017-0580-x
  9. Maximum difference analysis: a new empirical method for genome-wide association studies vol.15, pp.3, 2016, https://doi.org/10.1080/1828051x.2016.1216336
  10. Amino Acid Metabolism in Dairy Cows and their Regulation in Milk Synthesis vol.20, pp.1, 2009, https://doi.org/10.2174/1389200219666180611084014
  11. Transcriptome profiling of four candidate milk genes in milk and tissue samples of temperate and tropical cattle vol.98, pp.1, 2009, https://doi.org/10.1007/s12041-019-1060-y
  12. Regulation of Milk Protein Synthesis by Free and Peptide-Bound Amino Acids in Dairy Cows vol.10, pp.10, 2009, https://doi.org/10.3390/biology10101044