DOI QR코드

DOI QR Code

A tdcA Mutation Reduces the Invasive Ability of Salmonella enterica Serovar Typhimurium

  • Kim, Minjeong (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Lim, Sangyong (Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute) ;
  • Kim, Dongho (Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute) ;
  • Choy, Hyon E. (Genome Research Center for Enteropathogenic Bacteria and Research Institute of Vibrio Infection and Department of Microbiology, Chonnam National University Medical College) ;
  • Ryu, Sangryeol (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life Sciences, Seoul National University)
  • Received : 2009.07.13
  • Accepted : 2009.08.26
  • Published : 2009.10.31

Abstract

We previously observed that the transcription of some flagellar genes decreased in Salmonella Typhimurium tdcA mutant, which is a gene encoding the transcriptional activator of the tdc operon. Since flagella-mediated bacterial motility accelerates the invasion of Salmonella, we have examined the effect of tdcA mutation on the invasive ability as well as the flagellar biosynthesis in S. Typhimurium. A tdcA mutation caused defects in motility and formation of flagellin protein, FliC in S. Typhimurium. Invasion assays in the presence of a centrifugal force confirmed that the defect of flagellum synthesis decreases the ability of Salmonella to invade into cultured epithelial cells. In addition, we also found that the expression of Salmonella pathogenicity island 1 (SPI1) genes required for Salmonella invasion was down-regulated in the tdcA mutant because of the decreased expression of fliZ, a positive regulator of SPI1 transcriptional activator, hilA. Finally, the virulence of a S. Typhimurium tdcA mutant was attenuated compared to a wild type when administered orally. This study implies the role of tdcA in the invasion process of S. Typhimurium.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation

References

  1. Bajaj, V., Lucas, R.L., Hwang, C., and Lee, C.A. (1996). Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol. Microbiol. 22, 703-714 https://doi.org/10.1046/j.1365-2958.1996.d01-1718.x
  2. Chilcott, G.S., and Hughes, K.T. (2000). Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar Typhimurium and Escherichia coli. Microbiol. Mol. Biol. Rev. 64, 694-708 https://doi.org/10.1128/MMBR.64.4.694-708.2000
  3. Choi, J., Shin, D., and Ryu, S. (2007). Implication of quorum sensing in Salmonella enterica serovar Typhimurium virulence : the luxS gene is necessary for expression of genes in pathogenicity Island I. Infect. Immun. 75, 4885-4890 https://doi.org/10.1128/IAI.01942-06
  4. Datsenko, K.A., and Wanner, B.L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640-6645 https://doi.org/10.1073/pnas.120163297
  5. Dorman, C.J., Barr, G.C., Ní Bhriain, N., and Higgins, C.F. (1988). DNA supercoiling and the anaerobic and growth phase regulation of tonB gene expression, J. Bacteriol. 170, 2816-2826 https://doi.org/10.1128/jb.170.6.2816-2826.1988
  6. Drlica, K. (1992). Control of bacterial DNA supercoiling. Mol. Microbiol. 6, 425-433 https://doi.org/10.1111/j.1365-2958.1992.tb01486.x
  7. Eichelberg, K., and Gal$\ddot{a}$án, J.E. (2000). The flagellar sigma factor FliA ${\sigma}^28$ regulates the expression of Salmonella genes associated with the centisome 63 type III secretion system. Infect. Immun. 68, 2735-2743 https://doi.org/10.1128/IAI.68.5.2735-2743.2000
  8. Ganduri, Y.L., Sadda, S.R., Datta, M.W., Jambukeswaran, R.K., and Datta, P. (1993). TdcA, a transcriptional activator of the tdcABC operon of Escherichia coli, is a member of the LysR family of proteins. Mol. Gen. Genet. 240, 395-402
  9. Gellert, M., Mizuuchi, K., O’Dea, M.H., and Nash, H.A. (1976). DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc. Natl. Acad. Sci. USA 73, 3872-3876 https://doi.org/10.1073/pnas.73.11.3872
  10. Goss, T.J., Schweizer, H.P., and Datta, P. (1988). Molecular characterization of the tdc operon of Escherichia coli K-12. J. Bacteriol. 170, 5352-5359 https://doi.org/10.1128/jb.170.11.5352-5359.1988
  11. Guiney, D.G. (1997). Regulation of bacterial virulence gene expression by the host environment. J. Clin. Invest. 99, 565-569 https://doi.org/10.1172/JCI119196
  12. Hagewood, B.T., Ganduri, Y.L., and Datta, P. (1994). Functional analysis of the tdcABC promoter of Escherichia coli: roles of TdcA and TdcR. J. Bacteriol. 176, 6214-6220 https://doi.org/10.1128/jb.176.20.6214-6220.1994
  13. Heßlinger, C., Fairhurst, S.A., and Sawers, G. (1998). Novel keto acid formate-lyase and propionate kinase enzymes are components of an anaerobic pathway in Escherichia coli that degrades L-threonine to propionate. Mol. Microbiol. 27, 477-492 https://doi.org/10.1046/j.1365-2958.1998.00696.x
  14. Higgins, C.F., Dorman, C.J., Stirling, D.A., Waddell, L., Booth, I.R., May, G., and Bremer, E. (1988). A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 52, 569-584 https://doi.org/10.1016/0092-8674(88)90470-9
  15. Hsieh, L-.S., Burger, R.M., and Drlica, K. (1991). Bacterial DNA supercoiling and [ATP]/[ADP] changes associated with a transition to anaerobic growth. J. Mol. Biol. 219, 443-450 https://doi.org/10.1016/0022-2836(91)90185-9
  16. Iyoda, S., Kamidoi, T., Hirose, K., Kutsukake, K., and Watanabe, H. (2001). A flagellar gene fliZ regulates the expression of invasion genes and virulence phenotype in Salmonella enterica serovar Typhimurium. Microb. Pathog. 30, 81-90 https://doi.org/10.1006/mpat.2000.0409
  17. Jones, G.W., Richardson, L.A., and Uhlman, D. (1981). The invasion of HeLa cells by Salmonella typhimurium: reversible and irreversible bacterial attachment and the role of bacterial motility. J. Gen. Microbiol. 127, 351-360
  18. Jones, B.D., Lee, C.A., and Falkow, S. (1992). Invasion by Salmonella typhimurium is affected by the direction of flagellar rotation. Infect. Immun. 60, 2475-2480
  19. Josenhans, C., and Suerbaum, S. (2002). The role of motility as a virulence factor in bacteria. Int. J. Med. Microbiol. 291, 605-614 https://doi.org/10.1078/1438-4221-00173
  20. Kelly, A., Goldberg, M.D., Carroll, R.K., Danino, V., Hinton, J.C.D., and Dorman, C.J. (2004). A global role for Fis in the transcriptional control of metabolism and type III secretion in Salmonella enterica serovar Typhimurium. Microbiology 150, 2037-2053 https://doi.org/10.1099/mic.0.27209-0
  21. Kim, M., Lim, S., and Ryu, S. (2008). Molecular analysis of the Salmonella Typhimurium tdc operon regulation. J. Microbiol. Biotechnol. 18, 1024-1032
  22. Ko, M., and Park, C. (2000). H-NS-dependent regulation of flagellar synthesis is mediated by a LysR family protein. J. Bacteriol. 182, 4670-4672 https://doi.org/10.1128/JB.182.16.4670-4672.2000
  23. Komoriya, K., Shibano, N., Higano, T., Azuma, N., Yamaguchi, S., and Aizawa, S.I. (1999). Flagellar proteins and type III-exported virulence factors are the predominant proteins secreted into the culture media of Salmonella typhimurium. Mol. Microbiol. 34, 767-779 https://doi.org/10.1046/j.1365-2958.1999.01639.x
  24. Landini, P., and Zehnder, A.J.B. (2002). The global regulatory hns gene negatively affects adhesion to solid surfaces by anaerobically grown Escherichia coli by modulating expression of flagellar genes and lipopolysaccharide production. J. Bacteriol. 184, 1522-1529 https://doi.org/10.1128/JB.184.6.1522-1529.2002
  25. Lee, C.A., and Falkow, S. (1990). The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc. Natl. Acad. Sci. USA 87, 4304-4308 https://doi.org/10.1073/pnas.87.11.4304
  26. Lehnen, D., Blumer, C., Polen, T., Wackwitz, B., Wendisch, V.F., and Unden, G. (2002). LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli. Mol. Microbiol. 45, 521-532 https://doi.org/10.1046/j.1365-2958.2002.03032.x
  27. Lim, S.-Y., Joe, M.H., Song, S.S., Lee, M.H., Foster, J.W., Park, Y.K., Choi, S.Y., and Lee, I.S. (2002). cuiD is a crucial gene for survival at high copper environment in Salmonella enterica serovar Typhimuirum. Mol. Cells 14, 177-184
  28. Lim, S., Yong, K., and Ryu, S. (2005). Analysis of Salmonella pathogenicity island 1 expression in response to the changes of osmolarity. J. Microbiol. Biotechnol. 15, 175-182
  29. Lim, S., Yoon, H., Ryu, S., Jung, J., Lee, M., and Kim, D. (2006). A comparative evaluation of radiation-induced DNA damage using real-time PCR: influence of base composition. Radiat. Res. 165, 430-437 https://doi.org/10.1667/RR3507.1
  30. Lim, S., Yun, J., Yoon, H., Park, C., Kim, B., Jeon, B., Kim, D., and Ryu, S. (2007). Mlc regulation of Salmonella pathogenicity island I gene expression via hilE repression. Nucleic Acids Res. 35, 1822-1832 https://doi.org/10.1093/nar/gkm060
  31. Liu, S.L., Ezaki, T., Miura, H., Matsui, K., and Yabuuchi, E. (1988). Intact motility as a Salmonella typhi invasion-related factor. Infect. Immun. 56, 1967-1973
  32. Lucas, R.L., Lostroh, C.P., DIRusso, C.C., Spector, M.P., Wanner, B.L., and Lee, C.A. (2000). Multiple factors independently regulate hilA and invasion gene expression in Salmonella enterica serovar Typhimurium. J. Bacteriol. 182, 1872-1882 https://doi.org/10.1128/JB.182.7.1872-1882.2000
  33. Lostroh, C.P., and Lee, C.A. (2001). The Salmonella pathogenicity island-1 type III secretion system. Microbes Infect. 3, 1281-1291 https://doi.org/10.1016/S1286-4579(01)01488-5
  34. Maloy, S.R., Stewart, V.J., and Taylor, R.K. (1996). Genetic Analysis of Pathogenic Bacteria: A Laboratory Manual, (New York: Cold Spring Harbor Laboratory Press)
  35. Sawers, G. (1998). The anaerobic degradation of L-serine and Lthreonine in enterobacteria: networks of pathways and regulatory signals. Arch. Microbiol. 171, 1-5 https://doi.org/10.1007/s002030050670
  36. Schmitt, C.K., Ikeda, J.S., Darnell, S.C., Watson, P.R., Bispham, J., Wallis, T.S., Weinstein, D.L., Metcalf, E.S., and O’Brien, A.D. (2001). Absence of all components of the flagellar export and synthesis machinery differentially alters virulence of Salmonella enterica serovar Typhimurium in models of typhoid fever, survival in macrophages, tissue culture invasiveness, and calf enterocolitis. Infect. Immun. 69, 5619-5625 https://doi.org/10.1128/IAI.69.9.5619-5625.2001
  37. Schweizer, H.P., and Datta, P. (1989). Identification and DNA sequence of tdcR, a positive regulatory gene of the tdc operon of Escherichia coli. Mol. Gen. Genet. 218, 516-522 https://doi.org/10.1007/BF00332418
  38. Shi, W., Li, C., Louise, C., and Adler, J. (1993). Mechanism of adverse conditions causing lack of flagella in Escherichia coli. J. Bacteriol. 175, 2236-2240 https://doi.org/10.1128/jb.175.8.2236-2240.1993
  39. Song, M., Kim, H., Kim, E., Shin, M., Lee, H., Hong, Y., Rhee, J., Yoon, H., Ryu, S., Lim, S., et al. (2004). ppGpp-dependent stationary phase induction of genes on Salmonella pathogenicity island I. J. Biol. Chem. 279, 34183-34190 https://doi.org/10.1074/jbc.M313491200
  40. Soutourina, O.A., and Bertin, P.N. (2003). Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol. Rev. 27, 505-523
  41. Stecher, B., Hapfelmeier, S., Müller, C., Kremer, M., Stallmach, T., and Hardt, W.D. (2004). Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar Typhimurium colitis in streptomycin-pretreated mice. Infect. Immun. 72, 4138-4150 https://doi.org/10.1128/IAI.72.7.4138-4150.2004
  42. Sumantran, V.N., Tranguch, A.J., and Datta, P. (1989). Increased expression of biodegradative threonine dehydratase of Escherichia coli by DNA gyrase inhibitors. FEMS Microbiol. Lett. 65, 37-40 https://doi.org/10.1111/j.1574-6968.1989.tb03593.x
  43. Tomita, T., and Kanegasaki, S. (1982). Enhanced phagocytic response of macrophages to bacteria by impact caused by bacterial motility or centrifugation. Infect. Immun. 38, 865-870
  44. Wu, Y., and Datta, P. (1995). Influence of DNA topology on expression of the tdc operon in Escherichia coli K-12. Mol. Gen. Genet. 247, 764-767 https://doi.org/10.1007/BF00290409
  45. Wu, Y., Patil, R.V., and Datta, P. (1992). Catabolite gene activator protein and integration host factor act in concert to regulate tdc operon expression in Escherichia coli. J. Bacteriol. 174, 6918-6927 https://doi.org/10.1128/jb.174.21.6918-6927.1992

Cited by

  1. A Mutation in tdcA Attenuates the Virulence of Salmonella enterica Serovar Typhimurium vol.29, pp.5, 2009, https://doi.org/10.1007/s10059-010-0063-6
  2. The Fur regulon in anaerobically grown Salmonella enterica sv . Typhimurium: identification of new Fur targets vol.11, pp.None, 2009, https://doi.org/10.1186/1471-2180-11-236
  3. Comparison of tdcA Expression Between Escherichia coli and Salmonella enterica Serovar Typhimurium vol.21, pp.3, 2009, https://doi.org/10.4014/jmb.1010.10019
  4. Integrating Global Regulatory Input Into the Salmonella Pathogenicity Island 1 Type III Secretion System vol.190, pp.1, 2009, https://doi.org/10.1534/genetics.111.132779
  5. Transcriptional Profiling of an AttenuatedSalmonellaTyphimuriumptsIMutant Strain Under Low-oxygen Conditions using Microarray Analysis vol.45, pp.3, 2009, https://doi.org/10.4167/jbv.2015.45.3.200
  6. Cappable-Seq Reveals Specific Patterns of Metabolism and Virulence for Salmonella Typhimurium Intracellular Survival within Acanthamoeba castellanii vol.22, pp.16, 2021, https://doi.org/10.3390/ijms22169077