DOI QR코드

DOI QR Code

Regulation of ANKRD9 expression by lipid metabolic perturbations

  • Wang, Xiaofei (Department of Biological Sciences, Tennessee State University) ;
  • Newkirk, Robert F. (Department of Biological Sciences, Tennessee State University) ;
  • Carre, Wilfrid (Department of Animal and Food Sciences, University of Delaware) ;
  • Ghose, Purnima (Department of Biological Sciences, Tennessee State University) ;
  • Igobudia, Barry (Department of Biological Sciences, Tennessee State University) ;
  • Townsel, James G. (Department of Physiology, Meharry Medical College) ;
  • Cogburn, Larry A. (Department of Animal and Food Sciences, University of Delaware)
  • 발행 : 2009.09.30

초록

Fatty acid oxidation (FAO) defects cause abnormal lipid accumulation in various tissues, which provides an opportunity to uncover novel genes that are involved in lipid metabolism. During a gene expression study in the riboflavin deficient induced FAO disorder in the chicken, we discovered the dramatic increase in mRNA levels of an uncharacterized gene, ANKRD9. No functions have been ascribed to ANKRD9 and its orthologs, although their sequences are well conserved among vertebrates. To provide insight into the function of ANKRD9, the expression of ANKRD9 mRNA in lipidperturbed paradigms was examined. The hepatic mRNA level of ANKRD9 was repressed by thyroid hormone ($T_3$) and fasting, elevated by re-feeding upon fasting. However, ANKRD9 mRNA level is reduced in response to apoptosis. Transient transfection assay with green fluorescent protein tagged- ANKRD9 showed that this protein is localized within the cytoplasm. These findings point to the possibility that ANKRD9 is involved in intracellular lipid accumulation.

키워드

참고문헌

  1. White, H. B., 3rd, Nuwaysir, E. F., Komara, S. P., Anderson, D. A., Chang, S. J., Sherwood, T. A., Alphin, R. L. and Saylor, W. W. (1992) Effect of riboflavin-binding protein deficiency on riboflavin metabolism in the laying hen. Arch. Biochem. Biophys. 295, 29-34 https://doi.org/10.1016/0003-9861(92)90483-D
  2. MacLachlan, I., Nimpf, J., White, H. B., 3rd and Schneider, W. J. (1993) Riboflavinuria in the rd chicken. 5'-splice site mutation in the gene for riboflavin-binding protein. J. Biol. Chem. 268, 23222-23226
  3. Abrams, V. A., Han, C. C. and White, H. B., 3rd (1995) Riboflavin-deficient chicken embryos: hypoglycemia without dicarboxylic aciduria. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 111, 233-241 https://doi.org/10.1016/0305-0491(94)00247-R
  4. Weiss, R. E., Murata, Y., Cua, K., Hayashi, Y., Seo, H. and Refetoff, S. (1998) Thyroid hormone action on liver, heart, and energy expenditure in thyroid hormone receptor beta-deficient mice. Endocrinology. 139, 4945-4952 https://doi.org/10.1210/en.139.12.4945
  5. Moreno, M., Lombardi, A., Beneduce, L., Silvestri, E., Pinna, G., Goglia, F. and Lanni, A. (2002) Are the effects of T3 on resting metabolic rate in euthyroid rats entirely caused by T3 itself? Endocrinology. 143, 504-510 https://doi.org/10.1210/en.143.2.504
  6. Mukhopadhyay, D., Plateroti, M., Anant, S., Nassir, F., Samarut, J. and Davidson, N. O. (2003) Thyroid hormone regulates hepatic triglyceride mobilization and apolipoprotein B messenger ribonucleic Acid editing in a murine model of congenital hypothyroidism. Endocrinology. 144, 711-719 https://doi.org/10.1210/en.2002-220741
  7. Wang, X., Carre, W., Saxton, A. M. and Cogburn, L. A. (2007) Manipulation of thyroid status and/or GH injection alters hepatic gene expression in the juvenile chicken. Cytogenet. Genome Res. 117, 174-1884 https://doi.org/10.1159/000103178
  8. Cogburn, L. A., Porter, T. E., Duclos, M. J., Simon, J., Burgess, S. C., Zhu, J. J., Cheng, H. H., Dodgson, J. B. and Burnside, J. (2007) Functional genomics of the chicken--a model organism. Poult. Sci. 86, 2059-2094 https://doi.org/10.1093/ps/86.10.2059
  9. Jin, Q. H., Zhao, B. and Zhang, X. J. (2004) Cytochrome c release and endoplasmic reticulum stress are involved in caspase-dependent apoptosis induced by G418. Cell. Mol. Life Sci. 61, 1816-1825
  10. Boatright, K. M. and Salvesen, G. S. (2003) Mechanisms of caspase activation. Curr. Opin. Cell Biol. 15, 725-731 https://doi.org/10.1016/j.ceb.2003.10.009
  11. Xu, H. E., Lambert, M. H., Montana, V. G., Parks, D. J., Blanchard, S. G., Brown, P. J., Sternbach, D. D., Lehmann, J. M., Wisely, G. B., Willson, T. M., Kliewer, S. A. and Milburn, M. V. (1999) Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol. Cell. 3, 397-403 https://doi.org/10.1016/S1097-2765(00)80467-0
  12. Mishra, R., Emancipator, S. N., Miller, C., Kern, T. and Simonson, M. S. (2004) Adipose differentiation-related protein and regulators of lipid homeostasis identified by gene expression profiling in the murine db/db diabetic kidney. Am. J. Physiol. Renal Physiol. 286, F913-921 https://doi.org/10.1152/ajprenal.00323.2003
  13. Gross, D. N., Miyoshi, H., Hosaka, T., Zhang, H. H., Pino, E. C., Souza, S., Obin, M., Greenberg, A. S. and Pilch, P. F. (2006) Dynamics of lipid droplet-associated proteins during hormonally stimulated lipolysis in engineered adipocytes: stabilization and lipid droplet binding of adipocyte differentiation-related protein/adipophilin. Mol. Endocrinol. 20, 459-466 https://doi.org/10.1210/me.2005-0323
  14. Lee, C. M. and White, H. B., 3rd (1996) Riboflavin-binding protein induces early death of chicken embryos. J. Nutr. 126, 523-528 https://doi.org/10.1093/jn/126.2.523
  15. White, H. B., 3rd (1996) Sudden death of chicken embryos with hereditary riboflavin deficiency. J. Nutr. 126, S1303-1307 https://doi.org/10.1093/jn/126.suppl_4.1303S
  16. Abasht, B., Pitel, F., Lagarrigue, S., Le Bihan-Duval, E., Le Roy, P., Demeure, O., Vignoles, F., Simon, J., Cogburn, L., Aggrey, S., Vignal, A. and Douaire, M. (2006) Fatness QTL on chicken chromosome 5 and interaction with sex. Genet. Sel. Evol. 38, 297-311 https://doi.org/10.1186/1297-9686-38-3-297
  17. Mosavi, L. K., Cammett, T. J., Desrosiers, D. C. and Peng, Z.-y. (2004) The ankyrin repeat as molecular architecture for protein recognition. Protein Sci. 13, 1435-1448 https://doi.org/10.1110/ps.03554604
  18. Davis, L. H., Otto, E. and Bennett, V. (1991) Specific 33-residue repeat(s) of erythrocyte ankyrin associate with the anion exchanger. J. Biol. Chem. 266, 11163-11169
  19. Nicolas, V., Le Van Kim, C., Gane, P., Birkenmeier, C., Cartron, J. P., Colin, Y. and Mouro-Chanteloup, I. (2003) Rh-RhAG/ankyrin-R, a new interaction site between the membrane bilayer and the red cell skeleton, is impaired by Rh(null)-associated mutation. J. Biol. Chem. 278, 25526-25533 https://doi.org/10.1074/jbc.M302816200
  20. Rader, K., Orlando, R. A., Lou, X. and Farquhar, M. G. (2000) Characterization of ANKRA, a novel ankyrin repeat protein that interacts with the cytoplasmic domain of megalin. J. Am. Soc. Nephrol. 11, 2167-2178
  21. Zhang, X., He, X., Fu, X. Y. and Chang, Z. (2006) Varp is a Rab21 guanine nucleotide exchange factor and regulates endosome dynamics. J. Cell Sci. 119, 1053-1062 https://doi.org/10.1242/jcs.02810
  22. Sachdev, S., Hoffmann, A. and Hannink, M. (1998) Nuclear localization of IkappaB alpha is mediated by the second ankyrin repeat: the IkappaB alpha ankyrin repeats define a novel class of cis-acting nuclear import sequences. Mol. Cell. Biol. 18, 2524-2534 https://doi.org/10.1128/MCB.18.5.2524
  23. Zhang, A., Li, C. W., Tsai, S. C. and Chen, J. D. (2007) Subcellular localization of ankyrin repeats cofactor-1 regulates its corepressor activity. J. Cell Biochem. 101, 1301-1315 https://doi.org/10.1002/jcb.21251
  24. Lishko, P. V., Procko, E., Jin, X., Phelps, C. B. and Gaudet, R. (2007) The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron. 54, 905-918 https://doi.org/10.1016/j.neuron.2007.05.027
  25. Miller, M. K., Bang, M. L., Witt, C. C., Labeit, D., Trombitas, C., Watanabe, K., Granzier, H., McElhinny, A. S., Gregorio, C. C. and Labeit, S. (2003) The muscle ankyrin repeat proteins: CARP, ankrd2/Arpp and DARP as a family of titin filament-based stress response molecules. J. Mol. Biol. 333, 951-964 https://doi.org/10.1016/j.jmb.2003.09.012
  26. Winstead, M. V., Balsinde, J. and Dennis, E. A. (2000) Calcium-independent phospholipase A2: structure and function. BBA Mol. Cell Biol. Lipids. 1488, 28-39 https://doi.org/10.1016/S1388-1981(00)00107-4
  27. Adibhatla, R. M. and Hatcher, J. F. (2008) Phospholipase A(2), reactive oxygen species, and lipid peroxidation in CNS pathologies. BMB Rep. 41, 560-567
  28. Larsson, P. K., Claesson, H. E. and Kennedy, B. P. (1998) Multiple splice variants of the human calcium-independent phospholipase A2 and their effect on enzyme activity. J. Biol. Chem. 273, 207-214 https://doi.org/10.1074/jbc.273.1.207
  29. Beccavin, C., Chevalier, B., Cogburn, L. A., Simon, J. and Duclos, M. J. (2001) Insulin-like growth factors and body growth in chickens divergently selected for high or low growth rate. J. Endocrinol. 168, 297-306 https://doi.org/10.1677/joe.0.1680297

피인용 문헌

  1. Genome-wide RNAi ionomics screen reveals new genes and regulation of human trace element metabolism vol.5, 2014, https://doi.org/10.1038/ncomms4301
  2. Network analysis of transcriptional regulation in response to intramuscular interferon-β-1a multiple sclerosis treatment vol.12, pp.2, 2012, https://doi.org/10.1038/tpj.2010.77
  3. Transcriptional profiling of liver in riboflavin-deficient chicken embryos explains impaired lipid utilization, energy depletion, massive hemorrhaging, and delayed feathering vol.19, pp.1, 2018, https://doi.org/10.1186/s12864-018-4568-2