Acknowledgement
Supported by : Daegu University, Korea Science and Engineering Foundation
References
- Azarian, S.M., King, A.J., Hallett, M.A., and Williams, D.S. (1995). Selective proteolysis of arrestin by calpain. Molecular characteristics and its effect on rhodopsin dephosphorylation. J. Biol. Chem. 270, 24375-24384 https://doi.org/10.1074/jbc.270.41.24375
-
Barak, L.S., Ferguson, S.S., Zhang, J., and Caron, M.G. (1997). A
$\beta$ -arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation. J. Biol. Chem. 272, 27497-27500 https://doi.org/10.1074/jbc.272.44.27497 - Brautigan, D.L., and Pinault, F.M. (1993). Serine phosphorylation of protein tyrosine phosphatase (PTP1B) in HeLa cells in response to analogues of cAMP or diacylglycerol plus okadaic acid. Mol. Cell. Biochem. 127-128, 121-129 https://doi.org/10.1007/BF01076763
- Eguchi, S., Dempsey, P.J., Frank, G.D., Motley, E.D., and Inagami, T. (2001). Activation of MAPKs by angiotensin II in vascular smooth muscle cells. Metalloprotease-dependent EGF receptor activation is required for activation of ERK and p38 MAPK but not for JNK. J. Biol. Chem. 276, 7957-7962 https://doi.org/10.1074/jbc.M008570200
- Garton, A.J., and Tonks, N.K. (1994). PTP-PEST: a protein tyrosine phosphatase regulated by serine phosphorylation. EMBO J.13, 3763-3771
-
Han, M., Gurevich, V.V., Vishnivetskiy, S.A., Sigler, P.B., and Schubert, C. (2001). Crystal structure of
$\beta$ -arrestin at 1.9 A: possible mechanism of receptor binding and membrane translocation. Structure (Camb) 9, 869-880 https://doi.org/10.1016/S0969-2126(01)00644-X - Krupnick, J.G., Goodman, O.B., Jr., Keen, J.H., and Benovic, J.L. (1997). Arrestin/clathrin interaction. Localization of the clathrin binding domain of nonvisual arrestins to the carboxy terminus. J. Biol. Chem. 272, 15011-15016 https://doi.org/10.1074/jbc.272.23.15011
- Lee, C., Hwang, S.A., Jang, S.H., Chung, H.S., Bhat, M.B., and Karnik, S.S. (2007). Manifold active-state conformations in GPCRs: agonist-activated constitutively active mutant AT1 receptor preferentially couples to Gq compared to the wild-type AT1 receptor. FEBS Lett. 581, 2517-2522 https://doi.org/10.1016/j.febslet.2007.04.069
-
Lee, C., Bhatt, S., Shukla, A., Desnoyer, R.W., Yadav, S.P., Kim, M., Jang, S.H., and Karnik, S.S. (2008). Site-specific cleavage of G protein-coupled receptor-engaged
$\beta$ -arrestin: Influence of the AT1 receptor conformation on scissile site selection. J. Biol. Chem. 283, 21612-21620 https://doi.org/10.1074/jbc.M803062200 -
Lefkowitz, R.J., and Shenoy, S.K. (2005). Transduction of receptor signals by
$\beta$ -arrestins. Science 308, 512-517 https://doi.org/10.1126/science.1109237 -
Lin, F.T., Krueger, K.M., Kendall, H.E., Daaka, Y., Fredericks, Z.L., Pitcher, J.A., and Lefkowitz, R.J. (1997). Clathrin-mediated endocytosis of the
$\beta$ -adrenergic receptor is regulated by phosphorylation/dephosphorylation of$\beta$ -arrestin1. J. Biol. Chem. 272, 31051-31057 https://doi.org/10.1074/jbc.272.49.31051 - Marrero, M.B., Paxton, W.G., Schieffer, B., Ling, B.N., and Bernstein, K.E. (1996). Angiotensin II signalling events mediated by tyrosine phosphorylation. Cell. Signal. 8, 21-26 https://doi.org/10.1016/0898-6568(95)02016-0
- Marrero, M.B., Venema, V.J., Ju, H., Eaton, D.C., and Venema, R.C. (1998). Regulation of angiotensin II-induced JAK2 tyrosine phosphorylation: roles of SHP-1 and SHP-2. Am. J. Physiol. 275, C1216-1223
-
Nobles, K.N., Guan, Z., Xiao, K., Oas, T.G., and Lefkowitz, R.J. (2007). The active conformation of
$\beta$ -arrestin1: direct evidence for the phosphate sensor in the N-domain and conformational differences in the active states of$\beta$ -arrestins 1 and 2. J. Biol. Chem. 282, 21370-21381 https://doi.org/10.1074/jbc.M611483200 - Oro, C., Qian, H., and Thomas, W.G. (2007). Type 1 angiotensin receptor pharmacology: signaling beyond G proteins. Pharmacol. Ther. 113, 210-226 https://doi.org/10.1016/j.pharmthera.2006.10.001
- Pugazhenthi, S., Tanha, F., Dahl, B., and Khandelwal, R.L. (1996). Inhibition of a Src homology 2 domain containing protein tyrosine phosphatase by vanadate in the primary culture of hepatocytes. Arch. Biochem. Biophys. 335, 273-282 https://doi.org/10.1006/abbi.1996.0508
-
Strack, V., Krutzfeldt, J., Kellerer, M., Ullrich, A., Lammers, R., and Haring, H.U. (2002). The Protein-tyrosine-phosphatase SHP2 is phosphorylated on serine residues 576 and 591 by protein kinase C isoforms
$\alpha$ ,$\beta$ 1,$\beta$ 2, and η. Biochemistry 41, 603-608 https://doi.org/10.1021/bi011327v - Vishnivetskiy, S.A., Paz, C.L., Schubert, C., Hirsch, J.A., Sigler, P.B., and Gurevich, V.V. (1999). How does arrestin respond to the phosphorylated state of rhodopsin? J. Biol. Chem. 274, 11451-11454 https://doi.org/10.1074/jbc.274.17.11451
-
Xiao, K., Shenoy, S.K., Nobles, K., and Lefkowitz, R.J. (2004). Activation-dependent conformational changes in
$\beta$ -arrestin 2. J. Biol. Chem. 279, 55744-55753 https://doi.org/10.1074/jbc.M409785200