References
- Kaufman, R. J. (1999a) Molecular chaperones and the heat shock response. Sponsored by Cold Spring Harbor Laboratory, 6-10 May 1998. Biochim. Biophys. Acta 1423, R13-27
- Kaufman, R. J. (1999b) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 13, 1211-1233 https://doi.org/10.1101/gad.13.10.1211
- Paschen, W., Mengesdorf, T., Althausen, S. and Hotop, S. (2001) Peroxidative stress selectively down-regulates the neuronal stress response activated under conditions of endoplasmic reticulum dysfunction. J. Neurochem. 76, 1916-1924 https://doi.org/10.1046/j.1471-4159.2001.00206.x
- Ferreiro, E., Resende, R., Costa, R., Oliveira, C. R. and Pereira, C. M. (2006) An endoplasmic-reticulum-specific apoptotic pathway is involved in prion and amyloid-beta peptides neurotoxicity. Neurobiol. Dis. 23, 669-678 https://doi.org/10.1016/j.nbd.2006.05.011
- Conn, K. J., Gao, W., McKee, A., Lan, M. S., Ullman, M. D., Eisenhauer, P. B., Fine, R. E. and Wells, J. M. (2004) Identification of the protein disulfide isomerase family member PDIp in experimental Parkinson's disease and Lewy body pathology. Brain Res. 1022, 164-172 https://doi.org/10.1016/j.brainres.2004.07.026
- Holtz, W. A. and O'Malley, K. L. (2003) Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. J. Biol. Chem. 278, 19367-19377 https://doi.org/10.1074/jbc.M211821200
- Ryu, E. J., Harding, H. P., Angelastro, J. M., Vitolo, O. V., Ron, D. and Greene, L. A. (2002) Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's disease. J. Neurosci. 22, 10690-10698
- Csordas, G., Renken, C., Varnai, P., Walter, L., Weaver, D., Buttle, K. F., Balla, T., Mannella, C. A. and Hajnoczky, G. (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol. 174, 915-921 https://doi.org/10.1083/jcb.200604016
- Lee, A. S. (1992) Mammalian stress response: induction of the glucose-regulated protein family. Curr. Opin. Cell Biol. 4, 267-273 https://doi.org/10.1016/0955-0674(92)90042-B
- Lee, A. S. (2001) The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem. Sci. 26, 504-510 https://doi.org/10.1016/S0968-0004(01)01908-9
- Little, E., Ramakrishnan, M., Roy, B., Gazit, G. and Lee, A. S. (1994) The glucose-regulated proteins (GRP78 and GRP94): functions, gene regulation, and applications. Crit. Rev. Eukaryot. Gene Expr. 4, 1-18 https://doi.org/10.1615/CritRevEukarGeneExpr.v4.i1.10
- Lee, A. S. (2005) The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35, 373-381 https://doi.org/10.1016/j.ymeth.2004.10.010
- Rao, R. V., Peel, A., Logvinova, A., del Rio, G., Hermel, E., Yokota, T., Goldsmith, P. C., Ellerby, L. M., Ellerby, H. M. and Bredesen, D. E. (2002)Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett. 514, 122-128 https://doi.org/10.1016/S0014-5793(02)02289-5
- Reddy, R. K., Mao, C., Baumeister, P., Austin, R. C., Kaufman, R. J. and Lee, A. S. (2003) Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J. Biol. Chem. 278, 20915-20924 https://doi.org/10.1074/jbc.M212328200
-
Hajnoczky, G., Hager, R. and Thomas, A. P. (1999) Mitochondria suppress local feedback activation of inositol 1,4, 5-trisphosphate receptors by
$Ca^{2+}$ . J. Biol. Chem. 274, 14157-14162 https://doi.org/10.1074/jbc.274.20.14157 - Hoth, M., Button, D. C. and Lewis, R. S. (2000) Mitochondrial control of calcium-channel gating: a mechanism for sustained signaling and transcriptional activation in T lymphocytes. Proc. Natl. Acad. Sci. U.S.A. 97, 10607-10612 https://doi.org/10.1073/pnas.180143997
- Butow, R. A. and Avadhani, N. G. (2004) Mitochondrial signaling: the retrograde response. Mol. Cell 14, 1-15 https://doi.org/10.1016/S1097-2765(04)00179-0
-
Parekh, A. B. (2003) Mitochondrial regulation of intracellular
$Ca^{2+}$ signaling: more than just simple$Ca^{2+}$ buffers. News Physiol. Sci. 18, 252-256 -
Sadek, H.A., Szweda, P.A. and Szweda, L.I. (2004) Modulation of mitochondrial complex I activity by reversible
$Ca^{2+}$ and NADH mediated superoxide anion dependent inhibition. Biochemistry 43, 8494-8502 https://doi.org/10.1021/bi049803f - Elyaman, W., Terro, F., Suen, K. C., Yardin, C., Chang, R. C. and Hugon, J. (2002) BAD and Bcl-2 regulation are early events linking neuronal endoplasmic reticulum stress to mitochondria-mediated apoptosis. Brain Res. Mol. Brain Res. 109, 233-238 https://doi.org/10.1016/S0169-328X(02)00582-X
- Izuta, H., Shimazawa, M., Tazawa, S., Araki, Y., Mishima, S. and Hara, H. (2008) Protective effects of Chinese propolis and its component, chrysin, against neuronal cell death via inhibition of mitochondrial apoptosis pathway in SH-SY5Y cells. J. Agric. Food Chem. 56, 8944-8953 https://doi.org/10.1021/jf8014206
- Seo, Y. W., Park, S. Y., Yun, C. W. and Kim, T. H. (2006) Differential efflux of mitochondrial endonuclease G by hNoxa and tBid. J. Biochem. Mol. Biol. 39, 556-559 https://doi.org/10.5483/BMBRep.2006.39.5.556
- Lassus, P., Opitz-Araya, X. and Lazebnik, Y. (2002) Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297, 1352-1354 https://doi.org/10.1126/science.1074721
- Guo, Y., Srinivasula, S. M., Druilhe, A., Fernandes-Alnemri, T. and Alnemri, E. S. (2002) Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J. Biol. Chem. 277, 13430-13437 https://doi.org/10.1074/jbc.M108029200
- Slee, E. A., Harte, M. T., Kluck, R. M., Wolf, B. B.,Casiano, C. A., Newmeyer, D. D., Wang, H. G., Reed, J. C., Nicholson, D. W., Alnemri, E. S., Green, D. R. and Martin, S. J. (1999) Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J. Cell Biol. 144, 281-292 https://doi.org/10.1083/jcb.144.2.281
- Hitomi, J., Katayama, T., Eguchi, Y., Kudo, T., Taniguchi, M., Koyama, Y., Manabe, T., Yamagishi, S., Bando, Y., Imaizumi, K., Tsujimoto, Y. and Tohyama, M. (2004) Involvement of caspase- 4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J. Cell Biol. 165, 347-356 https://doi.org/10.1083/jcb.200310015
-
Chami, M., Oules, B., Szabadkai, G., Tacine, R., Rizzuto, R. and Paterlini-Br
$\acute{e}$ chot, P. (2008) Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to mitochondria during ER stress. Mol. Cell 32, 641-651 - Cardoso, S. M. and Oliveira, C. R. (2005) The role of calcineurin in amyloid-beta-peptides-mediated cell death. Brain Res. 1050, 1-7 https://doi.org/10.1016/j.brainres.2005.04.078
- Cardoso, S. M., Santos, S., Swerdlow, R. H. and Oliveira, C. R. (2001) Functional mitochondria are required for amyloid beta-mediated neurotoxicity. FASEB J. 15, 1439-1441 https://doi.org/10.1096/fj.00-0561fje
-
Nutt, L. K., Chandra, J., Pataer, A., Fang, B., Roth, J. A., Swisher, S. G., O'Neil, R. G. and McConkey, D. J. (2002) Bax-mediated
$Ca^{2+}$ mobilization promotes cytochrome c release during apoptosis. J. Biol. Chem. 277, 20301-20308 https://doi.org/10.1074/jbc.M201604200 - Deniaud, A., Sharaf el dein, O., Maillier, E., Poncet, D., Kroemer, G., Lemaire, C. and Brenner, C. (2008) Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene 27, 285-299 https://doi.org/10.1038/sj.onc.1210638
- Ragan, C. I., Wilson, M. T., Darley-Usmar, V. M. and Lowe, P. N. (1987) Subfractionation of Mitochondria and isolation of the proteins of oxidative phosphorylation. Mitochondria, a practical approach, pp. 79-112, IRL Press, London, UK
- Cregan, S. P., MacLaurin, J. G., Craig, C. G., Robertson, G. S., Nicholson, D. W., Park, D. S. and Slack, R. S. (1999) Bax-dependent caspase-3 activation is a key determinant in p53-induced apoptosis in neurons. J. Neurosci. 19, 7860-7869
Cited by
- Crocetin prevents retinal degeneration induced by oxidative and endoplasmic reticulum stresses via inhibition of caspase activity vol.650, pp.1, 2011, https://doi.org/10.1016/j.ejphar.2010.09.081
- Activation of SK2 channels preserves ER Ca2+ homeostasis and protects against ER stress-induced cell death vol.23, pp.5, 2016, https://doi.org/10.1038/cdd.2015.146
- Apoptotic pathways of macrophages within osteolytic interface membrane in periprosthestic osteolysis after total hip replacement vol.125, pp.6, 2017, https://doi.org/10.1111/apm.12679
- Regulation of the unfolded protein response by microRNAs vol.18, pp.4, 2013, https://doi.org/10.2478/s11658-013-0106-z
- Fungicide Bac8c triggers attenuation of mitochondrial homeostasis and caspase-dependent apoptotic death vol.133, 2017, https://doi.org/10.1016/j.biochi.2016.12.013
- Melittin triggers apoptosis inCandida albicansthrough the reactive oxygen species-mediated mitochondria/caspase-dependent pathway vol.355, pp.1, 2014, https://doi.org/10.1111/1574-6968.12450
- A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli vol.27, pp.6, 2014, https://doi.org/10.1007/s10534-014-9782-z
- Hibicuslide C-induced cell death inCandida albicansinvolves apoptosis mechanism vol.117, pp.5, 2014, https://doi.org/10.1111/jam.12633
- Silibinin triggers yeast apoptosis related to mitochondrial Ca2+ influx in Candida albicans vol.80, 2016, https://doi.org/10.1016/j.biocel.2016.09.008
- Mitochondria at the Interface Between Danger Signaling and Metabolism: Role of Unfolded Protein Responses in Chronic Inflammation vol.18, pp.7, 2012, https://doi.org/10.1002/ibd.21944
- Scolopendin 2 leads to cellular stress response in Candida albicans vol.21, pp.7, 2016, https://doi.org/10.1007/s10495-016-1254-1
- Lycopene induces apoptosis in Candida albicans through reactive oxygen species production and mitochondrial dysfunction vol.115, 2015, https://doi.org/10.1016/j.biochi.2015.05.009
- Drop in endo/sarcoplasmic calcium precedes the unfolded protein response in Brefeldin A-treated vascular smooth muscle cells vol.764, 2015, https://doi.org/10.1016/j.ejphar.2015.07.026
- Novel Antifungal Mechanism of Resveratrol: Apoptosis Inducer in Candida albicans vol.70, pp.3, 2015, https://doi.org/10.1007/s00284-014-0734-1
- Screening for calcium channel modulators in CLN3 siRNA knock down SH-SY5Y neuroblastoma cells reveals a significant decrease of intracellular calcium levels by selected L-type calcium channel blockers vol.1810, pp.2, 2011, https://doi.org/10.1016/j.bbagen.2010.09.004
- Mitochondrial metabolism in Parkinson's disease impairs quality control autophagy by hampering microtubule-dependent traffic vol.21, pp.21, 2012, https://doi.org/10.1093/hmg/dds309
- Identification of a novel antimicrobial peptide, scolopendin 1, derived from centipedeScolopendra subspinipes mutilansand its antifungal mechanism vol.23, pp.6, 2014, https://doi.org/10.1111/imb.12124
- Amyloid-Beta Disrupts Calcium and Redox Homeostasis in Brain Endothelial Cells vol.51, pp.2, 2015, https://doi.org/10.1007/s12035-014-8740-7
- Valproic Acid Protects Motor Neuron Death by Inhibiting Oxidative Stress and Endoplasmic Reticulum Stress-Mediated Cytochrome C Release after Spinal Cord Injury vol.31, pp.6, 2014, https://doi.org/10.1089/neu.2013.3146
- A novel microtubule de-stabilizing complementarity-determining region C36L1 peptide displays antitumor activity against melanoma in vitro and in vivo vol.5, pp.1, 2015, https://doi.org/10.1038/srep14310
- Inflammation and cellular stress: a mechanistic link between immune-mediated and metabolically driven pathologies vol.50, pp.4, 2011, https://doi.org/10.1007/s00394-011-0197-0
- miR-185 inhibits endoplasmic reticulum stress-induced apoptosis by targeting Na+/H+exchanger-1 in the heart vol.49, pp.4, 2016, https://doi.org/10.5483/BMBRep.2016.49.4.193
- AtWRKY15 perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis vol.109, pp.49, 2012, https://doi.org/10.1073/pnas.1217516109
- Microsomal Triglyceride Transfer Protein Inhibition Induces Endoplasmic Reticulum Stress and Increases Gene Transcription via Ire1α/cJun to Enhance Plasma ALT/AST vol.288, pp.20, 2013, https://doi.org/10.1074/jbc.M113.459602
- Ageing enhances α-synuclein, ubiquitin and endoplasmic reticular stress protein expression in the nigral neurons of Asian Indians vol.57, pp.5, 2010, https://doi.org/10.1016/j.neuint.2010.06.018
- Brefeldin A Induces Apoptosis by Activating the Mitochondrial and Death Receptor Pathways and Inhibits Focal Adhesion Kinase-Mediated Cell Invasion 2013, https://doi.org/10.1111/bcpt.12107
- Endoplasmic reticulum stress in the regulation of liver diseases: Involvement of Regulated IRE1α and β -dependent decay and miRNA vol.32, pp.5, 2017, https://doi.org/10.1111/jgh.13619
- Camalexin Induces Apoptosis via the ROS-ER Stress-Mitochondrial Apoptosis Pathway in AML Cells vol.2018, pp.1942-0994, 2018, https://doi.org/10.1155/2018/7426950