DOI QR코드

DOI QR Code

ER-mediated stress induces mitochondrial-dependent caspases activation in NT2 neuron-like cells

  • Arduino, Daniela M. (Centro de Neurociencias e Biologia Celular, Faculdade de Medicina, Universidade de Coimbra) ;
  • Esteves, A. Raquel (Centro de Neurociencias e Biologia Celular, Faculdade de Medicina, Universidade de Coimbra) ;
  • Domingues, A. Filipa (Centro de Neurociencias e Biologia Celular, Faculdade de Medicina, Universidade de Coimbra) ;
  • Pereira, Claudia M.F. (Centro de Neurociencias e Biologia Celular, Faculdade de Medicina, Universidade de Coimbra) ;
  • Cardoso, Sandra M. (Centro de Neurociencias e Biologia Celular, Faculdade de Medicina, Universidade de Coimbra) ;
  • Oliveira, Catarina R. (Centro de Neurociencias e Biologia Celular, Faculdade de Medicina, Universidade de Coimbra)
  • Published : 2009.11.30

Abstract

Recent studies have revealed that endoplasmic reticulum (ER) disturbance is involved in the pathophysiology of neurodegenerative disorders, contributing to the activation of the ER stress-mediated apoptotic pathway. Therefore, we investigated here the molecular mechanisms underlying the ER-mitochondria axis, focusing on calcium as a potential mediator of cell death signals. Using NT2 cells treated with brefeldin A or tunicamycin, we observed that ER stress induces changes in the mitochondrial function, impairing mitochondrial membrane potential and distressing mitochondrial respiratory chain complex Moreover, stress stimuli at ER level evoked calcium fluxes between ER and mitochondria. Under these conditions, ER stress activated the unfolded protein response by an overexpression of GRP78, and also caspase-4 and-2, both involved upstream of caspase-9. Our findings show that ER and mitochondria interconnection plays a prominent role in the induction of neuronal cell death under particular stress circumstances.

Keywords

References

  1. Kaufman, R. J. (1999a) Molecular chaperones and the heat shock response. Sponsored by Cold Spring Harbor Laboratory, 6-10 May 1998. Biochim. Biophys. Acta 1423, R13-27
  2. Kaufman, R. J. (1999b) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 13, 1211-1233 https://doi.org/10.1101/gad.13.10.1211
  3. Paschen, W., Mengesdorf, T., Althausen, S. and Hotop, S. (2001) Peroxidative stress selectively down-regulates the neuronal stress response activated under conditions of endoplasmic reticulum dysfunction. J. Neurochem. 76, 1916-1924 https://doi.org/10.1046/j.1471-4159.2001.00206.x
  4. Ferreiro, E., Resende, R., Costa, R., Oliveira, C. R. and Pereira, C. M. (2006) An endoplasmic-reticulum-specific apoptotic pathway is involved in prion and amyloid-beta peptides neurotoxicity. Neurobiol. Dis. 23, 669-678 https://doi.org/10.1016/j.nbd.2006.05.011
  5. Conn, K. J., Gao, W., McKee, A., Lan, M. S., Ullman, M. D., Eisenhauer, P. B., Fine, R. E. and Wells, J. M. (2004) Identification of the protein disulfide isomerase family member PDIp in experimental Parkinson's disease and Lewy body pathology. Brain Res. 1022, 164-172 https://doi.org/10.1016/j.brainres.2004.07.026
  6. Holtz, W. A. and O'Malley, K. L. (2003) Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. J. Biol. Chem. 278, 19367-19377 https://doi.org/10.1074/jbc.M211821200
  7. Ryu, E. J., Harding, H. P., Angelastro, J. M., Vitolo, O. V., Ron, D. and Greene, L. A. (2002) Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's disease. J. Neurosci. 22, 10690-10698
  8. Csordas, G., Renken, C., Varnai, P., Walter, L., Weaver, D., Buttle, K. F., Balla, T., Mannella, C. A. and Hajnoczky, G. (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol. 174, 915-921 https://doi.org/10.1083/jcb.200604016
  9. Lee, A. S. (1992) Mammalian stress response: induction of the glucose-regulated protein family. Curr. Opin. Cell Biol. 4, 267-273 https://doi.org/10.1016/0955-0674(92)90042-B
  10. Lee, A. S. (2001) The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem. Sci. 26, 504-510 https://doi.org/10.1016/S0968-0004(01)01908-9
  11. Little, E., Ramakrishnan, M., Roy, B., Gazit, G. and Lee, A. S. (1994) The glucose-regulated proteins (GRP78 and GRP94): functions, gene regulation, and applications. Crit. Rev. Eukaryot. Gene Expr. 4, 1-18 https://doi.org/10.1615/CritRevEukarGeneExpr.v4.i1.10
  12. Lee, A. S. (2005) The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35, 373-381 https://doi.org/10.1016/j.ymeth.2004.10.010
  13. Rao, R. V., Peel, A., Logvinova, A., del Rio, G., Hermel, E., Yokota, T., Goldsmith, P. C., Ellerby, L. M., Ellerby, H. M. and Bredesen, D. E. (2002)Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett. 514, 122-128 https://doi.org/10.1016/S0014-5793(02)02289-5
  14. Reddy, R. K., Mao, C., Baumeister, P., Austin, R. C., Kaufman, R. J. and Lee, A. S. (2003) Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J. Biol. Chem. 278, 20915-20924 https://doi.org/10.1074/jbc.M212328200
  15. Hajnoczky, G., Hager, R. and Thomas, A. P. (1999) Mitochondria suppress local feedback activation of inositol 1,4, 5-trisphosphate receptors by $Ca^{2+}$. J. Biol. Chem. 274, 14157-14162 https://doi.org/10.1074/jbc.274.20.14157
  16. Hoth, M., Button, D. C. and Lewis, R. S. (2000) Mitochondrial control of calcium-channel gating: a mechanism for sustained signaling and transcriptional activation in T lymphocytes. Proc. Natl. Acad. Sci. U.S.A. 97, 10607-10612 https://doi.org/10.1073/pnas.180143997
  17. Butow, R. A. and Avadhani, N. G. (2004) Mitochondrial signaling: the retrograde response. Mol. Cell 14, 1-15 https://doi.org/10.1016/S1097-2765(04)00179-0
  18. Parekh, A. B. (2003) Mitochondrial regulation of intracellular $Ca^{2+}$ signaling: more than just simple $Ca^{2+}$ buffers. News Physiol. Sci. 18, 252-256
  19. Sadek, H.A., Szweda, P.A. and Szweda, L.I. (2004) Modulation of mitochondrial complex I activity by reversible $Ca^{2+}$ and NADH mediated superoxide anion dependent inhibition. Biochemistry 43, 8494-8502 https://doi.org/10.1021/bi049803f
  20. Elyaman, W., Terro, F., Suen, K. C., Yardin, C., Chang, R. C. and Hugon, J. (2002) BAD and Bcl-2 regulation are early events linking neuronal endoplasmic reticulum stress to mitochondria-mediated apoptosis. Brain Res. Mol. Brain Res. 109, 233-238 https://doi.org/10.1016/S0169-328X(02)00582-X
  21. Izuta, H., Shimazawa, M., Tazawa, S., Araki, Y., Mishima, S. and Hara, H. (2008) Protective effects of Chinese propolis and its component, chrysin, against neuronal cell death via inhibition of mitochondrial apoptosis pathway in SH-SY5Y cells. J. Agric. Food Chem. 56, 8944-8953 https://doi.org/10.1021/jf8014206
  22. Seo, Y. W., Park, S. Y., Yun, C. W. and Kim, T. H. (2006) Differential efflux of mitochondrial endonuclease G by hNoxa and tBid. J. Biochem. Mol. Biol. 39, 556-559 https://doi.org/10.5483/BMBRep.2006.39.5.556
  23. Lassus, P., Opitz-Araya, X. and Lazebnik, Y. (2002) Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297, 1352-1354 https://doi.org/10.1126/science.1074721
  24. Guo, Y., Srinivasula, S. M., Druilhe, A., Fernandes-Alnemri, T. and Alnemri, E. S. (2002) Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J. Biol. Chem. 277, 13430-13437 https://doi.org/10.1074/jbc.M108029200
  25. Slee, E. A., Harte, M. T., Kluck, R. M., Wolf, B. B.,Casiano, C. A., Newmeyer, D. D., Wang, H. G., Reed, J. C., Nicholson, D. W., Alnemri, E. S., Green, D. R. and Martin, S. J. (1999) Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J. Cell Biol. 144, 281-292 https://doi.org/10.1083/jcb.144.2.281
  26. Hitomi, J., Katayama, T., Eguchi, Y., Kudo, T., Taniguchi, M., Koyama, Y., Manabe, T., Yamagishi, S., Bando, Y., Imaizumi, K., Tsujimoto, Y. and Tohyama, M. (2004) Involvement of caspase- 4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J. Cell Biol. 165, 347-356 https://doi.org/10.1083/jcb.200310015
  27. Chami, M., Oules, B., Szabadkai, G., Tacine, R., Rizzuto, R. and Paterlini-Br$\acute{e}$chot, P. (2008) Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to mitochondria during ER stress. Mol. Cell 32, 641-651
  28. Cardoso, S. M. and Oliveira, C. R. (2005) The role of calcineurin in amyloid-beta-peptides-mediated cell death. Brain Res. 1050, 1-7 https://doi.org/10.1016/j.brainres.2005.04.078
  29. Cardoso, S. M., Santos, S., Swerdlow, R. H. and Oliveira, C. R. (2001) Functional mitochondria are required for amyloid beta-mediated neurotoxicity. FASEB J. 15, 1439-1441 https://doi.org/10.1096/fj.00-0561fje
  30. Nutt, L. K., Chandra, J., Pataer, A., Fang, B., Roth, J. A., Swisher, S. G., O'Neil, R. G. and McConkey, D. J. (2002) Bax-mediated $Ca^{2+}$ mobilization promotes cytochrome c release during apoptosis. J. Biol. Chem. 277, 20301-20308 https://doi.org/10.1074/jbc.M201604200
  31. Deniaud, A., Sharaf el dein, O., Maillier, E., Poncet, D., Kroemer, G., Lemaire, C. and Brenner, C. (2008) Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene 27, 285-299 https://doi.org/10.1038/sj.onc.1210638
  32. Ragan, C. I., Wilson, M. T., Darley-Usmar, V. M. and Lowe, P. N. (1987) Subfractionation of Mitochondria and isolation of the proteins of oxidative phosphorylation. Mitochondria, a practical approach, pp. 79-112, IRL Press, London, UK
  33. Cregan, S. P., MacLaurin, J. G., Craig, C. G., Robertson, G. S., Nicholson, D. W., Park, D. S. and Slack, R. S. (1999) Bax-dependent caspase-3 activation is a key determinant in p53-induced apoptosis in neurons. J. Neurosci. 19, 7860-7869

Cited by

  1. Crocetin prevents retinal degeneration induced by oxidative and endoplasmic reticulum stresses via inhibition of caspase activity vol.650, pp.1, 2011, https://doi.org/10.1016/j.ejphar.2010.09.081
  2. Activation of SK2 channels preserves ER Ca2+ homeostasis and protects against ER stress-induced cell death vol.23, pp.5, 2016, https://doi.org/10.1038/cdd.2015.146
  3. Apoptotic pathways of macrophages within osteolytic interface membrane in periprosthestic osteolysis after total hip replacement vol.125, pp.6, 2017, https://doi.org/10.1111/apm.12679
  4. Regulation of the unfolded protein response by microRNAs vol.18, pp.4, 2013, https://doi.org/10.2478/s11658-013-0106-z
  5. Fungicide Bac8c triggers attenuation of mitochondrial homeostasis and caspase-dependent apoptotic death vol.133, 2017, https://doi.org/10.1016/j.biochi.2016.12.013
  6. Melittin triggers apoptosis inCandida albicansthrough the reactive oxygen species-mediated mitochondria/caspase-dependent pathway vol.355, pp.1, 2014, https://doi.org/10.1111/1574-6968.12450
  7. A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli vol.27, pp.6, 2014, https://doi.org/10.1007/s10534-014-9782-z
  8. Hibicuslide C-induced cell death inCandida albicansinvolves apoptosis mechanism vol.117, pp.5, 2014, https://doi.org/10.1111/jam.12633
  9. Silibinin triggers yeast apoptosis related to mitochondrial Ca2+ influx in Candida albicans vol.80, 2016, https://doi.org/10.1016/j.biocel.2016.09.008
  10. Mitochondria at the Interface Between Danger Signaling and Metabolism: Role of Unfolded Protein Responses in Chronic Inflammation vol.18, pp.7, 2012, https://doi.org/10.1002/ibd.21944
  11. Scolopendin 2 leads to cellular stress response in Candida albicans vol.21, pp.7, 2016, https://doi.org/10.1007/s10495-016-1254-1
  12. Lycopene induces apoptosis in Candida albicans through reactive oxygen species production and mitochondrial dysfunction vol.115, 2015, https://doi.org/10.1016/j.biochi.2015.05.009
  13. Drop in endo/sarcoplasmic calcium precedes the unfolded protein response in Brefeldin A-treated vascular smooth muscle cells vol.764, 2015, https://doi.org/10.1016/j.ejphar.2015.07.026
  14. Novel Antifungal Mechanism of Resveratrol: Apoptosis Inducer in Candida albicans vol.70, pp.3, 2015, https://doi.org/10.1007/s00284-014-0734-1
  15. Screening for calcium channel modulators in CLN3 siRNA knock down SH-SY5Y neuroblastoma cells reveals a significant decrease of intracellular calcium levels by selected L-type calcium channel blockers vol.1810, pp.2, 2011, https://doi.org/10.1016/j.bbagen.2010.09.004
  16. Mitochondrial metabolism in Parkinson's disease impairs quality control autophagy by hampering microtubule-dependent traffic vol.21, pp.21, 2012, https://doi.org/10.1093/hmg/dds309
  17. Identification of a novel antimicrobial peptide, scolopendin 1, derived from centipedeScolopendra subspinipes mutilansand its antifungal mechanism vol.23, pp.6, 2014, https://doi.org/10.1111/imb.12124
  18. Amyloid-Beta Disrupts Calcium and Redox Homeostasis in Brain Endothelial Cells vol.51, pp.2, 2015, https://doi.org/10.1007/s12035-014-8740-7
  19. Valproic Acid Protects Motor Neuron Death by Inhibiting Oxidative Stress and Endoplasmic Reticulum Stress-Mediated Cytochrome C Release after Spinal Cord Injury vol.31, pp.6, 2014, https://doi.org/10.1089/neu.2013.3146
  20. A novel microtubule de-stabilizing complementarity-determining region C36L1 peptide displays antitumor activity against melanoma in vitro and in vivo vol.5, pp.1, 2015, https://doi.org/10.1038/srep14310
  21. Inflammation and cellular stress: a mechanistic link between immune-mediated and metabolically driven pathologies vol.50, pp.4, 2011, https://doi.org/10.1007/s00394-011-0197-0
  22. miR-185 inhibits endoplasmic reticulum stress-induced apoptosis by targeting Na+/H+exchanger-1 in the heart vol.49, pp.4, 2016, https://doi.org/10.5483/BMBRep.2016.49.4.193
  23. AtWRKY15 perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis vol.109, pp.49, 2012, https://doi.org/10.1073/pnas.1217516109
  24. Microsomal Triglyceride Transfer Protein Inhibition Induces Endoplasmic Reticulum Stress and Increases Gene Transcription via Ire1α/cJun to Enhance Plasma ALT/AST vol.288, pp.20, 2013, https://doi.org/10.1074/jbc.M113.459602
  25. Ageing enhances α-synuclein, ubiquitin and endoplasmic reticular stress protein expression in the nigral neurons of Asian Indians vol.57, pp.5, 2010, https://doi.org/10.1016/j.neuint.2010.06.018
  26. Brefeldin A Induces Apoptosis by Activating the Mitochondrial and Death Receptor Pathways and Inhibits Focal Adhesion Kinase-Mediated Cell Invasion 2013, https://doi.org/10.1111/bcpt.12107
  27. Endoplasmic reticulum stress in the regulation of liver diseases: Involvement of Regulated IRE1α and β -dependent decay and miRNA vol.32, pp.5, 2017, https://doi.org/10.1111/jgh.13619
  28. Camalexin Induces Apoptosis via the ROS-ER Stress-Mitochondrial Apoptosis Pathway in AML Cells vol.2018, pp.1942-0994, 2018, https://doi.org/10.1155/2018/7426950