DOI QR코드

DOI QR Code

Gain of New Exons and Promoters by Lineage-Specific Transposable Elements-Integration and Conservation Event on CHRM3 Gene

  • Huh, Jae-Won (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Young-Hyun (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Sang-Rae (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Hyoungwoo (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Dae-Soo (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Heui-Soo (Division of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Kang, Han-Seok (College of Natural Resources and Life Sciences, Pusan National University) ;
  • Chang, Kyu-Tae (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2009.05.12
  • Accepted : 2009.06.23
  • Published : 2009.08.31

Abstract

The CHRM3 gene is a member of the muscarinic acetylcholine receptor family that plays important roles in the regulation of fundamental physiological functions. The evolutionary mechanism of exon-acquisition and alternative splicing of the CHRM3 gene in relation to transposable elements (TEs) were analyzed using experimental approaches and in silico analysis. Five different transcript variants (T1, T2, T3, T3-1, and T4) derived from three distinct promoter regions (T1: L1HS, T2, T4: original, T3, T3-1: THE1C) were identified. A placenta (T1) and testis (T3 and T3-1)-dominated expression pattern appeared to be controlled by different TEs (L1HS and THE1C) that were integrated into the common ancestor genome during primate evolution. Remarkably, the T1 transcript was formed by the integration event of the human specific L1HS element. Among the 12 different brain regions, the brain stem, olfactory region, and cerebellum showed decreased expression patterns. Evolutionary analysis of splicing sites and alternative splicing suggested that the exon-acquisition event was determined by a selection and conservation mechanism. Furthermore, continuous integration events of transposable elements could produce lineage specific alternative transcripts by providing novel promoters and splicing sites. Taken together, exon-acquisition and alternative splicing events of CHRM3 genes were shown to have occurred through the continuous integration of transposable elements following conservation.

Keywords

Acknowledgement

Supported by : Ministry of Education, Science and Technology

References

  1. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  2. Bieche, I., Laurent, A., Laurendeau, I., Duret, L., Giovangrandi, Y., Frendo, J.L., Olivi, M., Fausser, J.L., Evain-Brion, D., and Vidaud, M. (2003). Placenta-specific INSL4 expression is mediated by a human endogenous retrovirus element. Biol. Reprod. 68, 1422-1429 https://doi.org/10.1095/biolreprod.102.010322
  3. Braverman, A.S., Tallarida, R.J., and Ruggieri, M.R. (2008). The use of occupation isoboles for analysis of a response mediated by two receptors: M2 and M3 muscarinic receptor subtypeinduced mouse stomach contractions. J. Pharmacol. Exp. Ther. 325, 954-960 https://doi.org/10.1124/jpet.108.137018
  4. Brett, D., Hanke, J., Lehmann, G., Haase, S., Delbruck, S., Krueger, S., Reich, J., and Bork, P. (2000). EST comparison indicates 38% of human mRNAs contain possible alternative splice forms. FEBS Lett. 474, 83-86 https://doi.org/10.1016/S0014-5793(00)01581-7
  5. Calarco, J.A., Xing, Y., Caceres, M., Calarco, J.P., Xiao, X., Pan, Q., Lee, C., Preuss, T.M., and Blencowe, B.J. (2007). Global analysis of alternative splicing differences between humans and chimpanzees. Genes Dev. 21, 2963-2975 https://doi.org/10.1101/gad.1606907
  6. Cammeron, J.R., Loh, E.Y., and Davis, R.W. (1979). Evidence for transposition of dispersed repetitive DNA families in yeast. Cell 16, 739-751 https://doi.org/10.1016/0092-8674(79)90090-4
  7. Dunn, C.A., and Mager, D.L. (2005). Transcription of the human and rodent SPAM1/PH-20 genes initiates within an ancient en-dogenous retrovirus. BMC Genomics 6, 47 https://doi.org/10.1186/1471-2164-6-47
  8. Dunn, C.A., Medstrand, P., and Mager, D.L. (2003). An endogenous retroviral long terminal repeat is the dominant promoter for human beta1,3-galactosyltransferase 5 in the colon. Proc. Natl. Acad. Sci. USA 100, 12841-12846 https://doi.org/10.1073/pnas.2134464100
  9. Dunn, C.A., Romanish, M.T., Gutierrez, L.E., van de Lagemaat, L.N., and Mager, D.L. (2006). Transcription of two human genes from a bidirectional endogenous retrovirus promoter. Gene 266, 335-342
  10. Forsythe, S.M., Kogut, P.C., McConville, J.F., Fu, Y., McCauley, J.A., Halayko, A.J., Liu, H.W., Kao, A., Fernandes, D.J., Bellam, S., et al. (2002). Structure and transcription of the human m3 muscarinic receptor gene. Am. J. Respir. Cell Mol. Biol. 26, 298-305 https://doi.org/10.1165/ajrcmb.26.3.4564
  11. Gautam, D., Duttaroy, A., Cui, Y., Han, S.J., Deng, C., Seeger, T., Alzheimer, C., and Wess, J. (2006). M1-M3 muscarinic acetylcholine receptor-deficient mice: novel phenotypes. J. Mol. Neurosci. 30, 157-160 https://doi.org/10.1385/JMN:30:1:157
  12. Gerthoffer, W.T. (2005). Signal-transduction pathways that regulate visceral smooth muscle function. III. Coupling of muscarinic receptors to signaling kinases and effector proteins in gastrointestinal smooth muscles. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G849-853 https://doi.org/10.1152/ajpgi.00530.2004
  13. Grindley, N.D.F., and Reed, R.R. (1985). Transpositional recombi-nation in prokaryotes. Ann. Rev. Biochem. 54, 863-896 https://doi.org/10.1146/annurev.bi.54.070185.004243
  14. Guo. Y., Traurig, M., Ma, L., Kobes, S., Harper, I., Infante, A.M., Bogardus, C., Baier, L.J., and Prochazka, M. (2006). CHRM3 gene variation is associated with decreased acute insulin secretion and increased risk for early-onset type 2 diabetes in Pima Indians. Diabetes 55, 3625-3629 https://doi.org/10.2337/db06-0379
  15. Huh, J.W., Ha, H.S., Kim, D.S., and Kim, H.S. (2008). Placentarestricted expression of LTR-derived NOS3. Placenta 29, 602-608 https://doi.org/10.1016/j.placenta.2008.04.002
  16. International Human Genome Sequencing Consortium (2001). Initial sequencing and analysis of the human genome. Nature 409, 860-921 https://doi.org/10.1038/35057062
  17. Jurka, J. (2000). Repbase update: a database and an electronic journal of repetitive elements. Trends Genet. 16, 418-420 https://doi.org/10.1016/S0168-9525(00)02093-X
  18. Kim, D.S., Kim, T.H., Huh, J.W., Kim, I.C., Kim, S.W., Park, H.S., and Kim, H.S. (2006). LINE FUSION GENES: a database of LINE expression in human genes. BMC Genomics 7, 139 https://doi.org/10.1186/1471-2164-7-139
  19. Kitazawa, T., Hashiba, K., Cao, J., Unno, T., Komori, S., Yamada, M., Wess, J., and Taneike, T. (2007). Functional roles of muscarinic M2 and M3 receptors in mouse stomach motility: studies with muscarinic receptor knockout mice. Eur. J. Pharmacol. 554,212-222 https://doi.org/10.1016/j.ejphar.2006.10.013
  20. Landry, J.R., and Mager, D.L. (2003). Functional analysis of the endogenous retroviral promoter of the human endothelin B re-ceptor gene. J. Virol. 77, 7459-7466 https://doi.org/10.1128/JVI.77.13.7459-7466.2003
  21. Lev-Maor, G., Sorek, R., Shomron, N., and Ast, G. (2003). The birth of an alternatively spliced exon: 3' splice-site selection in Alu exons. Science 300, 1288-1291 https://doi.org/10.1126/science.1082588
  22. Matlik, K., Redik, K., and Speek, M. (2006). L1 antisense promoter drives tissue-specific transcription of human genes. J. Biomed. Biotechnol. 1, 71753 https://doi.org/10.1155/JBB/2006/71753
  23. Matsui, M., Araki, Y., Karasawa, H., Matsubara, N., Taketo, M.M., and Seldin, M.F. (1999). Mapping of five subtype genes for muscarinic acetylcholine receptor to mouse chromosomes. Genes Genet. Syst. 74, 15-21 https://doi.org/10.1266/ggs.74.15
  24. McClintock, B. (1956). Controlling elements and the gene. Cold Spring Harbor Symp. Quant. Biol. 35, 243-251
  25. Mills, R.E., Bennett, E.A., Iskow, R.C., Luttig, C.T., Tsui, C., Pittard, W.S., and Devine, S.E. (2006). Recently mobilized transposons in the human and chimpanzee genomes. Am. J. Hum. Genet. 78, 671-679 https://doi.org/10.1086/501028
  26. Mills, R.E., Bennett, E.A., Iskow, R.C., and Devine, S.E. (2007). Which transposable elements are active in the human genome? Trends Genet. 23, 183-191 https://doi.org/10.1016/j.tig.2007.02.006
  27. Renuka, T.R., Ani, D.V., and Paulose, C.S. (2004). Alterations in the muscarinic M1 and M3 receptor gene expression in the brain stem during pancreatic regeneration and insulin secretion in weanling rats. Life Sci. 75, 2269-2280 https://doi.org/10.1016/j.lfs.2004.03.034
  28. Rio, D.C. (1990). Molecular mechanisms regulating Drosophila Pelement transposition. Ann. Rev. Gen. 24, 543-578 https://doi.org/10.1146/annurev.ge.24.120190.002551
  29. Sela, N., Mersch, B., Gal-Mark, N., Lev-Maor, G., Hotz-Wagenblatt, A., and Ast, G. (2007). Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu's unique role in shaping the human transcriptome. Genome Biol. 8, R127 https://doi.org/10.1186/gb-2007-8-6-r127
  30. Speek, M. (2001). Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol. Cell. Biol. 21, 1973-1985 https://doi.org/10.1128/MCB.21.6.1973-1985.2001
  31. Sverdlov, E.D. (2000). Retroviruses and primate evolution. Bioessays 22, 161-171 https://doi.org/10.1002/(SICI)1521-1878(200002)22:2<161::AID-BIES7>3.0.CO;2-X
  32. Urrutia, A.O., Ocana, L.B., and Hurst, L.D. (2008) Do Alu repeats drive the evolution of the primate transcriptome? Genome Biol. 9, R25 https://doi.org/10.1186/gb-2008-9-2-r25
  33. van de Lagemaat, L.N., Landry, J.R., Mager, D.L., and Medstrand, P. (2003). Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet. 19, 530-536 https://doi.org/10.1016/j.tig.2003.08.004
  34. Wall, S.J., Yasuda, R.P., Li, M., and Wolfe, B.B. (1991). Development of an antiserum against m3 muscarinic receptors: distribution of m3 receptors in rat tissues and clonal cell lines. Mol. Pharmacol. 40, 783-789
  35. Watanabe, H., Fujiyama, A., Hattori, M., Taylor, T.D., Toyoda, A., Kuroki, Y., Noguchi, H., BenKahla, A., Lehrach, H., Sudbrak, R., et al. (2004). DNA sequence and comparative analysis of chimpanzee chromosome 22. Nature 429, 382-328 https://doi.org/10.1038/nature02564
  36. Yamada, M., Miyakawa, T., Duttaroy, A., Yamanaka, A., Moriguchi, T., Makita, R., Ogawa, M., Chou, C.J., Xia, B., Crawley, J.N., et al. (2001). Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature 410, 207-212 https://doi.org/10.1038/35065604
  37. Zhang, W., Yamada, M., Gomeza, J., Basile, A.S., and Wess, J. (2002). Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1-M5 muscarinic receptor knock-out mice. J. Neurosci. 22, 6347-6352
  38. Zhang, H.M., Chen, S.R., Matsui, M., Gautam, D., Wess, J., and Pan, H.L. (2006). Opposing functions of spinal M2, M3, and M4 receptor subtypes in regulation of GABAergic inputs to dorsal horn neurons revealed by muscarinic receptor knockout mice. Mol. Pharmacol. 69, 1048-1055 https://doi.org/10.1124/mol.105.018069
  39. Zhang, H.M., Zhou, H.Y., Chen, S.R., Gautam, D., Wess, J., and Pan, H.L. (2007). Control of glycinergic input to spinal dorsal horn neurons by distinct muscarinic receptor subtypes revealed using knockout mice. J. Pharmacol. Exp. Ther. 232, 963-971 https://doi.org/10.1124/jpet.107.127795

Cited by

  1. Primate-specific evolution of noncoding element insertion into PLA2G4C and human preterm birth vol.3, pp.None, 2009, https://doi.org/10.1186/1755-8794-3-62
  2. Tissue-Specific and Ubiquitous Expression Patterns from Alternative Promoters of Human Genes vol.5, pp.8, 2009, https://doi.org/10.1371/journal.pone.0012274
  3. Mobile DNA and the TE-Thrust hypothesis: supporting evidence from the primates vol.2, pp.None, 2009, https://doi.org/10.1186/1759-8753-2-8
  4. Genomic impact, chromosomal distribution and transcriptional regulation of HERV elements vol.33, pp.6, 2012, https://doi.org/10.1007/s10059-012-0037-y
  5. Evolution of genetic and genomic features unique to the human lineage vol.13, pp.12, 2009, https://doi.org/10.1038/nrg3336
  6. Analysis of Gene Expression in Induced Pluripotent Stem Cell-Derived Human Neurons Exposed to Botulinum Neurotoxin A Subtype 1 and a Type A Atoxic Derivative vol.9, pp.10, 2014, https://doi.org/10.1371/journal.pone.0111238
  7. Role of transposable elements in genomic rearrangement, evolution, gene regulation and epigenetics in primates vol.90, pp.5, 2015, https://doi.org/10.1266/ggs.15-00016
  8. Gain of a New Exon by a Lineage-Specific Alu Element-Integration Event in the BCS1L Gene during Primate Evolution vol.38, pp.11, 2015, https://doi.org/10.14348/molcells.2015.0121
  9. Constitutional 763.3 Kb chromosome 1q43 duplication encompassing only CHRM3 gene identified by next generation sequencing (NGS) in a child with intellectual disability vol.12, pp.None, 2009, https://doi.org/10.1186/s13039-019-0427-3
  10. Dramatic neurological and biological effects by botulinum neurotoxin type A on SH-SY5Y neuroblastoma cells, beyond the blockade of neurotransmitter release vol.21, pp.1, 2009, https://doi.org/10.1186/s40360-020-00443-0