DOI QR코드

DOI QR Code

Analysis of the Structure of the Bacterial Community in the Livestock Manure-based Composting Process

  • Sasaki, Hiraku (Graduate School of Agricultural Science, Tohoku University) ;
  • Nonaka, Jun (Graduate School of Agricultural Science, Tohoku University) ;
  • Otawa, Kenichi (Graduate School of Agricultural Science, Tohoku University) ;
  • Kitazume, Osamu (Graduate School of Agricultural Science, Tohoku University) ;
  • Asano, Ryoki (Graduate School of Agricultural Science, Tohoku University) ;
  • Sasaki, Takako (Graduate School of Agricultural Science, Tohoku University) ;
  • Nakai, Yutaka (Graduate School of Agricultural Science, Tohoku University)
  • Received : 2007.11.07
  • Accepted : 2008.02.06
  • Published : 2009.01.01

Abstract

We investigated the structure of bacterial communities present in livestock manure-based composting processes and evaluated the bacterial succession during the composting processes. Compost samples were derived separately from swine manure, dairy manure and sewage sludge. The structure of the bacterial community was analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) using universal eubacterial primers. The genus Bacillus and related genera were mainly detected following the thermophilic composting phase of swine and dairy manure composts, and the members of the phylum Bacteroidetes were mainly detected in the cattle manure waste-based and sewage sludge compost. We recovered and sequenced limited number of the bands; however, the PCR-DGGE analysis showed that predominant diversities during the composting processes were markedly changed. Although PCR-DGGE analysis revealed the presence of different phyla in the early stages of composting, the members of the phylum Firmicutes and Bacteroidetes were observed to be one of the predominant phyla after the thermophilic phase.

Keywords

References

  1. Battin, T. J., A. Wille, B. Sattler and R. Psenner. 2001. Phylogenetic and functional heterogeneity of sediment biofilms along environmental gradients in a glacial stream. Appl. Environ. Microbiol. 67:799-807 https://doi.org/10.1128/AEM.67.2.799-807.2001
  2. Boom, R., C. J. A. Sol, M. M. M. Salimans, C. L. Jansen, P. M. E. Wertheim-van Dillen and J. van der Noordaa. 1990. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 28:495-503
  3. Chynoweth, C. P., A. C. Wilkie and J. M. Owens. 1999. Anaerobic treatment of piggery slurry. Asian-Aust. J. Anim. Sci. 12:604-606
  4. Dees, P. M. and W. C. Ghiorse. 2001. Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiol. Ecol. 35:207-216 https://doi.org/10.1111/j.1574-6941.2001.tb00805.x
  5. Denger, K., R. Warthmann, W. Ludwig and B. Schink. 2002. Anaerophaga thermohalophila gen. nov., sp. nov., a moderately thermohalophilic, strictly anaerobic fermentative bacterium. Int. J. Syst. Evol. Microbiol. 52:173-178
  6. Eichner, C. A., R. W. Erb, K. N. Timmis and I. Wagner-Dobler. 1999. Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community. Appl. Environ. Microbiol. 65:102-109 https://doi.org/10.1360/04yc0132
  7. Gherna, R. and C. R. Woese. 1992. A partial phylogenetic analysis of the “Flavobacter-Bacteroides” phylum: basis for taxonomic restructuring. Syst. Appl. Microbiol. 15:513-521 https://doi.org/10.1016/S0723-2020(11)80110-4
  8. Green, S. J., F. C. Michel Jr., Y. Hadar and D. Minz. 2004. Similarity of bacterial communities in sawdust- and strawamended cow manure composts. FEMS Microbiol. Lett. 233:115-123 https://doi.org/10.1016/j.femsle.2004.01.049
  9. Hanajima, D., K. Kuroda, Y. Fukumoto and K. Haga. 2004. Growth of seeded Escherichia coli in rewetted cattle waste compost of different stages. 2004. Asian-Aust. J. Anim. Sci. 17:278-282
  10. Hong, W. S. and M. J. Chen. 2007. Rapid identification of bifidobacteria in dairy products by gene-targeted speciesspecific PCR technique and DGGE. Asian-Aust. J. Anim. Sci. 20:1887-1894
  11. Honschopp, S., N. Brunken, A. Nehrhorn and H. J. Breunig. 1996. Isolation and characterization of a new arsenic methylating bacterium from soil. Microbiol. Res. 151:37-41 https://doi.org/10.1016/S0944-5013(96)80053-X
  12. Hu, H. Y., B. R. Lim, N. Goto and K. Fujie. 2001. Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J. Microbiol. Methods 47:17-24 https://doi.org/10.1016/S0167-7012(01)00286-X
  13. Ishii, K. and M. Fukui. 2001. Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl. Environ. Microbiol. 67:3753-3755 https://doi.org/10.1128/AEM.67.8.3753-3755.2001
  14. Kenzaka, T., N. Yamaguchi, K. Tani and M. Nasu. 1998. rRNAtargeted fluorescent in situ hybridization analysis of bacterial community structure in river water. Appl. Environ. Microbiol. 144:2085-2093 https://doi.org/10.1128/AEM.71.9.5523-5531.2005
  15. Manz, W., R. Amann, W. Ludwig, M. Vancanneyt and K. H. Schleifer. 1996. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum Cytophaga-Flavobacter-Bacteroides in the natural environment. Microbiology 142:1097-1106 https://doi.org/10.1099/13500872-142-5-1097
  16. Muyzer, G., E. C. Waal and A. G. Uitterilinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rDNA. Appl. Environ. Microbiol. 59:695-700 https://doi.org/10.1136/adc.77.2.148
  17. Page, R. D. 1996. TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12:357-358
  18. Paster, B. J., F. E. Dewhirst, I. Olsen and G. J. Fraser. 1994. Phylogeny of Bacteroidetes, Prevotella, and Porphyromonas spp. and related bacteria. J. Bacteriol. 176:725-732
  19. Poltz, M. F. and C. M. Cavanaugh. 1998. Bias in template-to product ratios in multitemplate PCR. Appl. Environ. Microbiol. 64:3724-3730
  20. Potter, M., F. B. Oppermann-Sanio and A. Steinbuchel. 2001. Cultivation of bacteria producing polyamino acids with liquid manure as carbon and nitrogen source. Appl. Environ. Microbiol. 67:617-622 https://doi.org/10.1128/AEM.67.2.617-622.2001
  21. Rolleke, S., C. Gurtner, U. Drewello, R. Drewello, W. Lubitz and R. Weissmann. 1999. Analysis of bacterial communities on historical glass by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. J. Microbiol. Methods 36:107-114 https://doi.org/10.1016/S0167-7012(99)00015-9
  22. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425
  23. Sasaki, H., H. Yano, T. Sasaki and Y. Nakai. 2005. A survey of ammonia-assimilating microorganisms in cattle manure composting. J. Appl. Microbiol. 99:1356-1363 https://doi.org/10.1111/j.1365-2672.2005.02717.x
  24. Sasaki, H., O. Kitazume, J. Nonaka, K. Hikosaka, K. Otawa, K. Ito and Y. Nakai. 2006. Effect of a commercial microbiological additive on the beef manure compost in the composting process. Anim. Sci. J. 77:545-548 https://doi.org/10.1111/j.1740-0929.2006.00384.x
  25. Sasaki, H., J. Nonaka, T. Sasaki and Y. Nakai. 2007. Ammonia removal from livestock wastewater by ammonia-assimilating microorganisms immobilized in polyvinyl alcohol. J. Ind. Microbiol. Biotechnol. 34:105-110 https://doi.org/10.1007/s10295-006-0172-6
  26. Strom, P. F. 1985. Identification of thermophilic bacteria in solidwaste composting. Appl. Environ. Microbiol. 50:906-913 https://doi.org/10.1016/S0168-6496(01)00092-7
  27. Thompson, J. D., D. G. Higgins and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680 https://doi.org/10.1093/nar/22.22.4673
  28. Tiquia, S. M. and J. F. C. Michel. 2002. Bacterial diversity in livestock manure composts as characterized by terminal restriction fragment length polymorphism (T-RFLP) of PCRamplified 16S rRNA gene sequences. Microbiology of composting and other biodegradation processes (Ed. H. Insam, N. Riddech and S. Klammer). Springer-Verlag, Berlin Heidelberg, pp. 65-82
  29. Wakase, S., H. Sasaki, K. Ito, K. Otawa, O. Kitazume, J. Nonaka, M. Satoh, T. Sasaki and Y. Nakai. 2008. Investigation of the microbial community in a microbiological additive used in a manure composting process. Bioresour. Technol. 99:2687-2693 https://doi.org/10.1016/j.biortech.2007.04.040
  30. Weber, S., S. Stubner and R. Conrad. 2001. Bacterial populations colonizing and degrading rice straw in anoxic paddy soil. Appl. Environ. Microbiol. 67:1318-1327 https://doi.org/10.1128/AEM.67.3.1318-1327.2001
  31. White, B. A., I. K Cann, S. A. Kocherginskaya, R. I. Aminov, L. A. Thill, R. I. Mackie and R. Onodera. 1999. Molecular analysis of archaea, bacteria and eucarya communities in the rumen. Asian-Aust. J. Anim. Sci. 12:129-138
  32. Yoon, J. H., K. H. Kang and Y. H. Park. 2002. Lentibacillus salicampi gen.nov.,sp.nov.,a moderately halophilic bacterium isolated from a salt field in Korea. Int. J. Syst. Evol. Microbiol. 52:2043-2048 https://doi.org/10.1099/ijs.0.02335-0
  33. Zhang, Y. C., R. S. Ronimus, N. Turner, Y. Zhang and H. W. Morgan. 2002. Enumeration of thermophilic Bacillus species in composts and identification with a random amplification polymorphic DNA (RAPD) protocol. Syst. Appl. Microbiol. 25:618-626 https://doi.org/10.1078/07232020260517760

Cited by

  1. Archaeal community dynamics and detection of ammonia-oxidizing archaea during composting of cattle manure using culture-independent DNA analysis vol.90, pp.4, 2011, https://doi.org/10.1007/s00253-011-3153-2
  2. Changes in Bacterial and Fungal Communities across Compost Recipes, Preparation Methods, and Composting Times vol.8, pp.11, 2013, https://doi.org/10.1371/journal.pone.0079512
  3. High-throughput nucleotide sequence analysis of diverse bacterial communities in leachates of decomposing pig carcasses vol.38, pp.3, 2015, https://doi.org/10.1590/S1415-475738320140252
  4. Kinetics of Chemical Properties and Microbial Quantity in Soil Amended with Raw and Processed Pig Slurry vol.22, pp.5, 2009, https://doi.org/10.5713/ajas.2009.80417
  5. Bacterial Communities Developing during Composting Processes in Animal Manure Treatment Facilities vol.22, pp.6, 2009, https://doi.org/10.5713/ajas.2009.80663
  6. Aerobic mineralization of selected organic nutrient sources for soil fertility improvement in cambisols, Southern Ethiopia vol.11, pp.1, 2009, https://doi.org/10.5897/ajest2016.2191
  7. Changes in Bacterial Communities during a Pilot-Scale Composting Process of Dairy Manure vol.146, pp.9, 2009, https://doi.org/10.1061/(asce)ee.1943-7870.0001774
  8. Bacterial Community Dynamics Distinguish Poultry Compost from Dairy Compost and Non-Amended Soils Planted with Spinach vol.8, pp.10, 2009, https://doi.org/10.3390/microorganisms8101601
  9. Metagenomic analysis reveals enhanced biodiversity and composting efficiency of lignocellulosic waste by thermoacidophilic effective microorganism (tEM) vol.276, pp.None, 2009, https://doi.org/10.1016/j.jenvman.2020.111252