DOI QR코드

DOI QR Code

Functional Characteristics of TRPC4 Channels Expressed in HEK 293 Cells

  • Sung, Tae Sik (Center for Bio-Artificial Muscle and Department of Physiology, Seoul National University College of Medicine) ;
  • Kim, Min Ji (Center for Bio-Artificial Muscle and Department of Physiology, Seoul National University College of Medicine) ;
  • Hong, Soojin (Center for Bio-Artificial Muscle and Department of Physiology, Seoul National University College of Medicine) ;
  • Jeon, Jae-Pyo (Center for Bio-Artificial Muscle and Department of Physiology, Seoul National University College of Medicine) ;
  • Kim, Byung Joo (Center for Bio-Artificial Muscle and Department of Physiology, Seoul National University College of Medicine) ;
  • Jeon, Ju-Hong (Center for Bio-Artificial Muscle and Department of Physiology, Seoul National University College of Medicine) ;
  • Kim, Seon Jeong (Center for Bio-Artificial Muscle and Department of Biomedical Engineering, Hanyang University) ;
  • So, Insuk (Center for Bio-Artificial Muscle and Department of Physiology, Seoul National University College of Medicine)
  • Received : 2008.08.12
  • Accepted : 2008.12.01
  • Published : 2009.02.28

Abstract

The classical type of transient receptor potential (TRPC) channel is a molecular candidate for $Ca^{2+}$-permeable cation channels in mammalian cells. Because TRPC4 and TRPC5 belong to the same subfamily of TRPC, they have been assumed to have the same physiological properties. However, we found that TRPC4 had its own functional characteristics different from those of TRPC5. TRPC4 channels had no constitutive activity and were activated by muscarinic stimulation only when a muscarinic receptor was co-expressed with TRPC4 in human embryonic kidney (HEK) cells. Endogenous muscarinic receptor appeared not to interact with TRPC4. TPRC4 activation by $GTP{\gamma}S$ was not desensitized. TPRC4 activation by $GTP{\gamma}S$ was not inhibited by either Rho kinase inhibitor or MLCK inhibitor. TRPC4 was sensitive to external pH with $pK_a$ of 7.3. Finally, TPRC4 activation by $GTP{\gamma}S$ was inhibited by the calmodulin inhibitor W-7. We conclude that TRPC4 and TRPC5 have different properties and their own physiological roles.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation

References

  1. Beck, B., Zholos, A., Sydorenko, V., Roudbaraki, M., Lehen'kyi, V., Bordat, P., Prevarskaya, N., and Skryma, R. (2006). TRPC7 is a receptor-operated DAG-activated channel in human keratinocytes. J. Invest. Dermatol. 126, 1982-1993 https://doi.org/10.1038/sj.jid.5700352
  2. Dietrich, A., Mederos, Y., Schnitzler, M., Gollasch, M., Gross, V., Storch, U., Dubrovska, G., Obst, M., Yildirim, E., Salanova, B., et al. (2005). Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol. Cell. Biol. 25, 6980-6989 https://doi.org/10.1128/MCB.25.16.6980-6989.2005
  3. Feske, S., Gwack, Y., Prakriya, M., Srikanth, S., Puppel, S.H., Tanasa, B., Hogan, P.G., Lewis, R.S., Daly, M., and Rao, A. (2006). A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179-185 https://doi.org/10.1038/nature04702
  4. Freichel, M., Suh, S.H., Pfeifer, A., Schweig, U., Trost, C., Weissgerber, P., Biel, M., Philipp, S., Freise, D., Droogmans, G., et al. (2001). Lack of an endothelial store-operated $Ca^{2+}$ current impairs agonist-dependent vasorelaxation in TRP4-/- mice. Nat. Cell Biol. 3, 121-127 https://doi.org/10.1038/35055019
  5. Hardie, R.C., and Minke, B. (1993). Novel $Ca^{2+}$ channels underlying transduction in Drosophila photoreceptors: implications for phosphoinositide-mediated $Ca^{2+}$ mobilization. Trends Neurosci. 16, 371-376 https://doi.org/10.1016/0166-2236(93)90095-4
  6. Inoue, R., Waniishi, Y., and Ito, Y. (1995). Extracellular $H^+$ modulates acetylcholine-activated nonselective cation channels in guinea pig ileum. Am. J. Physiol. 268, C162-C170 https://doi.org/10.1152/ajpcell.1995.268.1.C162
  7. Inoue, R., Okada, T., Onoue, H., Hara, Y., Shimizu, S., Naitoh, S., Ito, Y., and Mori, Y. (2001). The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha( 1)-adrenoceptor-activated Ca(2+)-permeable cation channel. Circ. Res. 88, 325-332 https://doi.org/10.1161/01.RES.88.3.325
  8. Jeon, J.P., Lee, K.P., Park, E.J., Sung, T.S., Kim, B.J., Jeon, J.H., and So, I. (2008). The specific activation of TRPC4 by Gi protein subtype. Biochem. Biophys. Res. Commun. 377, 538-543 https://doi.org/10.1016/j.bbrc.2008.10.012
  9. Jung, S., Strotmann, R., Schultz, G., and Plant, T.D. (2002). TRPC6 is a candidate channel involved in receptor-stimulated cation currents in A7r5 smooth muscle cells. Am. J. Physiol. Cell Physiol. 282, C347-C359 https://doi.org/10.1152/ajpcell.00283.2001
  10. Kim, M.T., Kim, B.J., Lee, J.H., Kwon, S.C., Yeon, D.S., Yang, D.K., So, I., and Kim, K.W. (2006). Involvement of calmodulin and myosin light chain kinase in the activation of mTRPC5 expressed in HEK cells, Am. J. Physiol. Cell Physiol. 290, C1031-C1040 https://doi.org/10.1152/ajpcell.00602.2004
  11. Kim, B.J., Jeon, J.H., Kim, S.J., and So, I. (2007). Role of calmodulin and myosin light chain kinase in the activation of carbachol- activated cationic current in murine ileal myocytes. Can. J. Physiol. Pharmacol. 85, 1254-1262 https://doi.org/10.1139/Y07-118
  12. Kim, M.J., Jeon, J.P., Kim, H.J., Kim, B.J., Lee, Y.M., Choe, H., Jeon, J.H., Kim, S.J., and So, I. (2008). Molecular determinant of sensing extracellular pH in classical transient receptor potential channel 5. Biochem. Biophys. Res. Commun. 365, 239-245 https://doi.org/10.1016/j.bbrc.2007.10.154
  13. Lee, Y.M., Kim, B.J., Kim, H.J., Yang, D.K., Zhu, M.H., Lee, K.P., So, I., and Kim, K.W. (2003). TRPC5 as a candidate for the nonselective cation channel activated by muscarinic stimulation in murine stomach. Am. J. Physiol. Gastrointest Liver Physiol. 284, G604-G616 https://doi.org/10.1152/ajpgi.00069.2002
  14. Lee, K.P., Jun, J.Y., Chang, I.Y., Suh, S.H., So, I., and Kim, K.W. (2005). TRPC4 is an essential component of the nonselective cation channel activated by muscarinic stimulation in mouse visceral smooth muscle cells. Mol. Cells 20, 425-431
  15. Lee, E.H., Kim, D.H., and Allen, P.D. (2006). Interplay between intra- and extracellular calcium ions. Mol. Cells 21, 315-329
  16. Liman, E.R., Corey, D.P., and Dulac, C. (1999). TRP2: a candidate transduction channel for mammalian pheromone sensory signaling. Proc. Natl. Acad. Sci. USA 96, 5791-5796 https://doi.org/10.1073/pnas.96.10.5791
  17. Lucas, P., Ukhanov, K., Leinders-Zufall, T., and Zufall. F. (2003). A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pheromone transduction. Neuron 40, 551-561 https://doi.org/10.1016/S0896-6273(03)00675-5
  18. Otsuguro, K., Tang, J., Tang, Y., Xiao, R., Freichel, M., Tsvilovskyy, V., Ito, S., Flockerzi, V., Zhu, M.X., and Zholos, A.V. (2008). Isoform-specific Inhibition of TRPC4 Channel by Phosphatidylinositol 4,5-Bisphosphate. J. Biol. Chem. 283, 10026-10036 https://doi.org/10.1074/jbc.M707306200
  19. Satoh, S., Tanaka, H., Ueda, Y., Oyama, J., Sugano, M., Sumimoto, H., Mori, Y., and Makino, N. (2007). Transient receptor potential (TRP) protein 7 acts as a G protein-activated $Ca^{2+}$ channel mediating angiotensin II-induced myocardial apoptosis. Mol. Cell. Biochem. 294, 205-215 https://doi.org/10.1007/s11010-006-9261-0
  20. Shi, J., Mori, E., Mori, Y., Mori, M., Li, J., Ito, Y., and Inoue, R. (2004). Multiple regulation by calcium of murine homologues of transient receptor potential proteins TRPC6 and TRPC7 expressed in HEK293 cells. J. Physiol. 561, 415-432 https://doi.org/10.1113/jphysiol.2004.075051
  21. Shimizu, S., Yoshida, T., Wakamori, M., Ishii, M., Okada, T., Takahashi, M., Seto, M., Sakurada, K., Kiuchi, Y., and Mori, Y. (2006). $Ca^{2+}$-calmodulin-dependent myosin light chain kinase is essential for activation of TRPC5 channels expressed in HEK293 cells. J. Physiol. 570, 219-235 https://doi.org/10.1113/jphysiol.2005.097998
  22. Stowers, L., Holy, T.E., Meister, M., Dulac, C., and Koentges, G. (2002). Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295, 1493-1500 https://doi.org/10.1126/science.1069259
  23. Vannier, B., Peyton, M., Boulay, G., Brown, D., Qin, N., Jiang, M., Zhu, X., and Birnbaumer, L. (1999). Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative $Ca^{2+}$ entry channel. Proc. Natl. Acad. Sci. USA. 96, 2060-2064 https://doi.org/10.1073/pnas.96.5.2060
  24. Xu, S.Z., Zeng, F., Lei, M., Li, J., Gao, B., Xiong, C., Sivaprasadarao, A., and Beech, D.J. (2005). Generation of functional ionchannel tools by E3 targeting. Nat. Biotechnol. 23, 1289-1293 https://doi.org/10.1038/nbt1148
  25. Yoshida, T., Inoue, R., Morii, T., Takahashi, N., Yamamoto, S., Hara, Y., Tominaga, M., Shimizu, S., Sato, Y., and Mori, Y. (2006). Nitric oxide activates TRP channels by cysteine Snitrosylation. Nat. Chem. Biol. 2, 596-607 https://doi.org/10.1038/nchembio821
  26. Zhang, S.L., Yu, Y., Roos, J., Kozak, J.A., Deerinck, T.J., Ellisman, M.H., Stauderman, K.A., and Cahalan, M.D. (2005). STIM1 is a $Ca^{2+}$ sensor that activates CRAC channels and migrates from the $Ca^{2+}$ store to the plasma membrane. Nature 437, 902-905 https://doi.org/10.1038/nature04147
  27. Zholos, A.V., and Bolton, T.B. (1997). Effects of protons on muscarinic receptor cationic current in single visceral smooth muscle cells. Am. J. Physiol. 272, G215-G223
  28. Zhu, M.H., Lee, Y.M., Jin, N.G., So, I., and Kim, K.W. (2003). The transient receptor potential protein homologue TRPC4/5 as a candidate for the nonselective cationic channel activated by muscarinic stimulation in the murine stomach. Neurophysiology 35, 330-335 https://doi.org/10.1023/B:NEPH.0000008812.78912.4f
  29. Zhu, M.H., Chae, M., Kim, H.J., Lee, Y.M., Kim, M.J., Jin, N.G., Yang, D.K., So, I., and Kim, K.W. (2005). Desensitization of canonical transient receptor potential channel 5 by protein kinase C. Am. J. Physiol. Cell Physiol. 289, C591-C600 https://doi.org/10.1152/ajpcell.00440.2004

Cited by

  1. Up-stream events in the nuclear factor κB activation cascade in response to sparsely ionizing radiation vol.44, pp.8, 2009, https://doi.org/10.1016/j.asr.2009.07.009
  2. Protons and Ca2+: Ionic Allies in Tumor Progression? vol.26, pp.4, 2009, https://doi.org/10.1152/physiol.00005.2011
  3. Carbon-Ion-Induced Activation of the NF-κB Pathway vol.175, pp.4, 2009, https://doi.org/10.1667/rr2423.1