DOI QR코드

DOI QR Code

Emerging roles of RNA and RNA-binding protein network in cancer cells

  • Kim, Mee-Young (National Research Lab for RNA Cell Biology, BK21 Graduate Program for RNA Biology and Department of Molecular Biology, Dankook University) ;
  • Hur, Jung (National Research Lab for RNA Cell Biology, BK21 Graduate Program for RNA Biology and Department of Molecular Biology, Dankook University) ;
  • Jeong, Sun-Joo (National Research Lab for RNA Cell Biology, BK21 Graduate Program for RNA Biology and Department of Molecular Biology, Dankook University)
  • 발행 : 2009.03.31

초록

Recent advances in RNA biology reveal unexpected diversity and complexity of cellular RNA metabolism. RNA-binding proteins (RBPs) are essential players in RNA metabolism, regulating RNA splicing, transport, surveillance, decay and translation. Aberrant expression of RBPs affects many steps of RNA metabolism, significantly altering expression of RNA. Thus, altered expression and dysfuncting of RBPs are implicated in the development of various diseases including cancer. In this minireview, we briefly describe emerging roles of RBPs as a global coordinator of post-transcriptional steps and altered RBP as a global generator of cancer related RNA alternative splicing. Identification and characterization of the RNA-RBP network would expand the scope of cellular RNA metabolism and provide novel anti-cancer therapeutic targets based on cancer specific RNA-RBP interaction.

키워드

참고문헌

  1. Sharp, P. A. (2009) The centrality of RNA. Cell 136, 577- 580 https://doi.org/10.1016/j.cell.2009.02.007
  2. Lukong, K. E., Chang K. W., Khandjian, E. W. and Richard, S. (2008) RNA-binding proteins in human genetic disease. Trends Genet. 24, 416-425 https://doi.org/10.1016/j.tig.2008.05.004
  3. Lunde, B. M., Moore, C. and Varani, G. (2007) RNA-binding proteins: modular design for efficient function. Nat. Rev. Mol. Cell Biol. 8, 479-490 https://doi.org/10.1038/nrm2178
  4. Glisovic, T., Bachorik, J. L., Yong, J. and Dreyfuss, G. (2008) RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 582, 977-1986 https://doi.org/10.1016/j.febslet.2008.02.045
  5. Maniatis, T. and Reed, R. (2002) An extensive network of coupling among gene expression machines. Nature 416, 499-506 https://doi.org/10.1038/416499a
  6. Orphanides, G. and Reinberg, D. (2002) A unified theory of gene expression. Cell 108, 439-451 https://doi.org/10.1016/S0092-8674(02)00655-4
  7. Moore, M. J. and Proudfoot, N. J. (2009) Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136, 688-700 https://doi.org/10.1016/j.cell.2009.02.001
  8. Huang, Y. and Steitz, J. A. (2005) SRprises along a messenger's journey. Mol. Cell 17, 613-615 https://doi.org/10.1016/j.molcel.2005.02.020
  9. Sanford, J. R., Gray, N. K., Beckmann, K. and Caceres, J. F. (2004) A novel role for shuttling SR proteins in mRNA translation. Genes. Dev. 18, 755-768 https://doi.org/10.1101/gad.286404
  10. Sanford, J. R., Ellis, J. D., Cazalla, D. and Caceres, J. F. (2005) Reversible phosphorylation differentially affects nuclear and cytoplasmic functions of splicing factor 2/alter native splicing factor. Proc. Natl. Acad. Sci. U. S. A. 102, 15042-15047 https://doi.org/10.1073/pnas.0507827102
  11. Keene, J. D. (2007) RNA regulons: coordination of post-transcriptional events. Nat. Rev. Genet. 8, 533-543 https://doi.org/10.1038/nrg2111
  12. Gerber, A. P., Herschlag, D. and Brown, P. O. (2004) Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding protein in yeast. PLoS Biol. 2, 342-354 https://doi.org/10.1371/journal.pbio.0020342
  13. Sanford, J. R., Coutinho, P., Hackett, J. A., Wang, X., Ranahan, W. and Caceres, J. F. (2008) Identification of nuclear and cytoplasmic mRNA targets for the shuttling protein SF2/ASF. PLoS ONE 3, e3369 https://doi.org/10.1371/journal.pone.0003369
  14. Cooper, T. A., Wan, L. and Dreyfuss, D. (2009) RNA and disease. Cell 136, 777-793 https://doi.org/10.1016/j.cell.2009.02.011
  15. Jele, N. Ule, J., Zivin, M. and Darnell, R. B. (2007) Evolution of Nova-dependent splicing regulation in the brain. PLoS Genet. 3, e173 https://doi.org/10.1371/journal.pgen.0030173
  16. Birzele, F., Csaba, G. and Zimmer, R. (2008) Alternative splicing and protein structure evolution. Nucleic. Acids. Res. 36, 550-558
  17. Stamm, S., Ben-Ari, S., Rafalska, I., Tang, Y., Zhang, Z., Toiber, D., Thanaraj, T. A. and Soreq, H. (2005) Function of alternative splicing. Gene 344, 1-20 https://doi.org/10.1016/j.gene.2004.10.022
  18. Fedor, M. J. (2008) Alternative splicing minireview series: combinatorial control facilitates splicing regulation of gene expression and enhances genome diversity. J. Biol. Chem. 283, 1209-1210 https://doi.org/10.1074/jbc.R700046200
  19. Hertel, K. J. (2008) Combinatorial control of exon recognition. J. Biol. Chem. 283, 1211-1215 https://doi.org/10.1074/jbc.R700035200
  20. Ben-Dov, C., Hartmann, B., Lundgren, J. and Valcarcel, J. (2008) Genome-wide analysis of alternative pre-mRNA splicing. J. Biol. Chem. 283, 1229-1233 https://doi.org/10.1074/jbc.R700033200
  21. House, A. E. and Lynch, K. W. (2008) Regulation of alternative splicing: more than just the ABCs. J. Biol. Chem. 283, 1217-1221 https://doi.org/10.1074/jbc.R700031200
  22. Stamm, S. (2008) Regulation of alternative splicing by reversible protein phosphorylation. J. Biol. Chem. 283, 1223-1227 https://doi.org/10.1074/jbc.R700034200
  23. Wang, G. S. and Cooper, T. A. (2007) Splicing in disease: disruption of the splicing code and the decoding machinery. Nat. Rev. Genet. 8, 749-761 https://doi.org/10.1038/nrg2164
  24. and Montuenga, L. M. (2007) Alternative splicing: an emerging topic in molecular and clinical oncology. Lacent. Onc. 8, 349-357 https://doi.org/10.1016/S1470-2045(07)70104-3
  25. Kim, E., Goren, A. and Ast, G. (2008) Insights into the connection between cancer and alternative splicing. Trends Genet. 24, 7-10 https://doi.org/10.1016/j.tig.2007.10.001
  26. Kim, E. Goren, A. and Ast, G. Alternative splicing and disease. RNA Biol. 5, 1-3
  27. Venables, J. P. (2004) Aberrant and alternative splicing in cancer. Cancer Res. 64, 7647-7654 https://doi.org/10.1158/0008-5472.CAN-04-1910
  28. Scholzov$\acute{a}$, E., Mal$\acute{i}$k, R., $\check{S}$ev$\check{c}$ik, J. and Kleibl, Z. (2007) RNA regulation and cancer development. Cancer Lett. 246, 12-23 https://doi.org/10.1016/j.canlet.2006.03.021
  29. Audic, Y. and Hartley, R. S. (2004) Post-transcriptional regulation in cancer. Biol. Cell 96, 479-498 https://doi.org/10.1016/j.biolcel.2004.05.002
  30. Xu, Q. and Lee, C. (2003) Discovery of novel splice forms and functional analysis of cancer-specific alternative splicing in human expressed sequences. Nucleic. Acids. Res. 31, 5635-5643 https://doi.org/10.1093/nar/gkg786
  31. Naor, D., Nedvetzki, S., Golan, I., Melnik, L. and Faitelson, Y. (2002) CD44 in cancer. Crit. Rev. Clin. Lab. Sci. 39, 527-579 https://doi.org/10.1080/10408360290795574
  32. Matter, N., Herrlich, P. and K$\ddot{o}$nig, H. (2002) Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 420, 691-695 https://doi.org/10.1038/nature01153
  33. Stickeler, E., Kittrell, F., Medina, D. and Berget, S. M. (1999) Stage-specific changes in SR splicing factors and alternative splicing in mammary tumorigenesis. Oncogene 18, 3574-3582 https://doi.org/10.1038/sj.onc.1202671
  34. Orend, G. and Chiquet-Ehrismann, R. (2006) Tenascin-C induced signaling in cancer. Cancer Lett. 8, 143-163
  35. Ferrara, N., Gerber, H. P. and LeCouter, J. (2003) The biology of VEGF and its receptors. Nat. Med. 9, 669-676 https://doi.org/10.1038/nm0603-669
  36. Grunstein, J., Masbad, J. J., Hickey, R., Giordano, F. and Johnson, R. S. (2000) Isoforms of vascular endothelial growth factor act in a coordinate fashion to recruit and expand tumor vasculature. Mol. Cell Biol. 20, 7282-7291 https://doi.org/10.1128/MCB.20.19.7282-7291.2000
  37. Riggi, N., Cironi, L., Suv$\grave{a}$, M. L. and Stamenkovic, I. (2007) Sarcomas:genetics, signaling, and cellular origins. Part 1: The fellowship of TET. J. Pathol. 213, 4-20 https://doi.org/10.1002/path.2209
  38. Torchia, E. C., Boyd, K., Rehg, J. E., Qu, C. and Baker, S. J. (2007) EWS/FLI-1 induces rapid onset of myeloid/erythroid leukemia in mice. Mol. Cell Biol. 27, 7918-7934 https://doi.org/10.1128/MCB.00099-07
  39. and Ilaria, R. L. Jr. (2005) Expression of the EWS/FLI-1 oncogene in murine primary bone-derived cells results in EWS/FLI-1-dependent, ewing sarcoma-like tumors. Cancer Res. 65, 8698-8705 https://doi.org/10.1158/0008-5472.CAN-05-1704
  40. Yin, Y., Chung, P., de Rooij, D. G., Akhmedov, A., Ashley, T. and Ron, D. (2000) Male sterility and enhanced radiation sensitivity in TLS (-/-) mice. EMBO J. 19, 453-462 https://doi.org/10.1093/emboj/19.3.453
  41. Li, H., Watford, W., Li, C., Parmelee, A., Bryant, M. A., Deng, C., O'Shea, J. and Lee, S. B. (2007) Ewing sarcoma gene EWS is essential for meiosis and B lymphocyte development. J. Clin. Incest. 117, 1314-1323 https://doi.org/10.1172/JCI31222
  42. and Krainer, A. R. (2007) The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat. Struct. Mol. Biol. 14, 185-193 https://doi.org/10.1038/nsmb1209
  43. Michlewski, G., Sanford, J. R. and Caceres, J. F. (2008) The splicing factor SF2/ASF regulates translation initiation by enhancing phosphorylation of 4E-BP1. Mol. Cell 30, 179-189 https://doi.org/10.1016/j.molcel.2008.03.013
  44. Karni, R., Hippo, Y. Lowe, S. W. and Krainer, A. R. (2008) The splicing-factor oncoprotein SF2/ASF activates mTORC1. Proc. Natl. Acad. Sci. U. S. A. 105, 15323-15327 https://doi.org/10.1073/pnas.0801376105
  45. Sonenberg, N. and Hinnebusch, A. G. (2007) New modes of translational control in development, behavior, and disease. Mol. Cell 28, 721-729 https://doi.org/10.1016/j.molcel.2007.11.018
  46. Lukong, K. E. and Richard, S. (2003) Sam68, the KH domain- containing superSTAR. Biochim. Biophys. Acta. 1653, 73-86
  47. Bus$\grave{a}$, R., Paronetto, M. P., Farini, D., Pierantozzi, E., Botti, F., Angelini, D. F. and Attisani, F. (2007) The RNA-binding protein Sam68 contributes to proliferation and survival of human prostate cancer cells. Oncogene 26, 4372-4382 https://doi.org/10.1038/sj.onc.1210224
  48. Lee, H. K. and Jeong, S. (2006) $\beta$-catenin stabilizes cyclooxygenase- 2 mRNA by interacting with AU-rich elements of 3'-UTR. Nucleic. Acids. Res. 34, 5705-5714 https://doi.org/10.1093/nar/gkl698
  49. Lee, H. K., Choi, Y. S., Park, Y. A. and Jeong, S. (2006) Modulation of oncogenic transcription and alternative splicing by $\beta$-catenin and an RNA aptamer in colon cancer cells. Cancer Res. 66, 10560-10566 https://doi.org/10.1158/0008-5472.CAN-06-2526
  50. Lee, H. K., Kwak, H. Y., Hur, J., Kim, I. A., Yang, J. S., Park, M. W., Yu, J. and Jeong, S. (2007) $\beta$-catenin regulates multiple steps of RNA metabolism as revealed by RNA aptamer in colon cancer cells. Cancer Res. 67, 9315-9321 https://doi.org/10.1158/0008-5472.CAN-07-1128
  51. Cech, T. R. (2009) Crawling out of RNA world. Cell 136, 599-602 https://doi.org/10.1016/j.cell.2009.02.002
  52. Fleischer, T. C., Weaver, C. M., McAfee, K. J., Jennings, J. L. and Link, A. J. (2006) Systematic identification and functional screens of uncharacterized proteins associated with eukaryotic ribosomal complexes. Genes Dev. 20, 1294-1307 https://doi.org/10.1101/gad.1422006
  53. Hogan, D. J., Riordan, D. P., Gerber, A. P., Herschlag, D. and Brown, P. O. (2008) Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol. 6, e255 https://doi.org/10.1371/journal.pbio.0060255
  54. Licatalosi, D. D., Mele, A., Fak, J. J., Kayikci, M., Chi, S. W., Clark, T. A., Schweitzer, A. C., Blume, J. E., Wang, X., Darnell, J. C. and Darnell, R. B. (2008) HITS-CLIP yields genome- wide insights into brain alternative RNA processing. Nature 456, 464-469 https://doi.org/10.1038/nature07488

피인용 문헌

  1. RPI-Pred: predicting ncRNA-protein interaction using sequence and structural information vol.43, pp.3, 2015, https://doi.org/10.1093/nar/gkv020
  2. Cytoplasmic HuR expression correlates with angiogenesis, lymphangiogenesis, and poor outcome in lung cancer vol.28, pp.S1, 2011, https://doi.org/10.1007/s12032-010-9734-6
  3. Dysregulated transcription across diverse cancer types reveals the importance of RNA-binding protein in carcinogenesis vol.16, pp.Suppl 7, 2015, https://doi.org/10.1186/1471-2164-16-S7-S5
  4. Comparability of differential proteomics data generated from paired archival fresh-frozen and formalin-fixed samples by GeLC–MS/MS and spectral counting vol.77, 2012, https://doi.org/10.1016/j.jprot.2012.09.033
  5. Splicing Programs and Cancer vol.2012, 2012, https://doi.org/10.1155/2012/269570
  6. Cytoplasmic HuR expression correlates with P-gp, HER-2 positivity, and poor outcome in breast cancer vol.34, pp.4, 2013, https://doi.org/10.1007/s13277-013-0774-3
  7. Versatility of RNA-Binding Proteins in Cancer vol.2012, 2012, https://doi.org/10.1155/2012/178525
  8. HuR and post-transcriptional regulation in vascular aging vol.57, pp.8, 2014, https://doi.org/10.1007/s11427-014-4706-2
  9. ZFP36L1 promotes monocyte/macrophage differentiation by repressing CDK6 vol.5, pp.1, 2015, https://doi.org/10.1038/srep16229
  10. p53 is activated in response to disruption of the pre-mRNA splicing machinery vol.32, pp.1, 2013, https://doi.org/10.1038/onc.2012.38
  11. Dissecting the expression dynamics of RNA-binding proteins in posttranscriptional regulatory networks vol.106, pp.48, 2009, https://doi.org/10.1073/pnas.0906940106
  12. Mice deficient in Rbm38, a target of the p53 family, are susceptible to accelerated aging and spontaneous tumors vol.111, pp.52, 2014, https://doi.org/10.1073/pnas.1415607112
  13. The DEAD-box RNA helicase DDX41 is a novel repressor of p21WAF1/CIP1mRNA translation vol.292, pp.20, 2017, https://doi.org/10.1074/jbc.M116.772327
  14. High Expression of HuR in Cytoplasm, but Not Nuclei, Is Associated with Malignant Aggressiveness and Prognosis in Bladder Cancer vol.8, pp.3, 2013, https://doi.org/10.1371/journal.pone.0059095
  15. β-Catenin recognizes a specific RNA motif in the cyclooxygenase-2 mRNA 3′-UTR and interacts with HuR in colon cancer cells vol.40, pp.14, 2012, https://doi.org/10.1093/nar/gks331
  16. Computationally predicting protein-RNA interactions using only positive and unlabeled examples vol.13, pp.03, 2015, https://doi.org/10.1142/S021972001541005X
  17. Given Dimensions of Neoplastic Events as Aberrantly Operative Alternative Splicing vol.2010, 2010, https://doi.org/10.4061/2010/509245
  18. Wig1 prevents cellular senescence by regulating p21 mRNA decay through control of RISC recruitment vol.31, pp.22, 2012, https://doi.org/10.1038/emboj.2012.286
  19. Using RNA as Molecular Code for Programming Cellular Function vol.5, pp.8, 2016, https://doi.org/10.1021/acssynbio.5b00297
  20. Integrative genomic analyses of the RNA-binding protein, RNPC1, and its potential role in cancer prediction vol.36, pp.2, 2015, https://doi.org/10.3892/ijmm.2015.2237
  21. A quantitative RNA code for mRNA target selection by the germline fate determinant GLD-1 vol.30, pp.3, 2011, https://doi.org/10.1038/emboj.2010.334
  22. MKP-1 regulates cytokine mRNA stability through selectively modulation subcellular translocation of AUF1 vol.56, pp.2, 2011, https://doi.org/10.1016/j.cyto.2011.06.006
  23. Posttranscriptional regulation of cancer traits by HuR vol.1, pp.2, 2010, https://doi.org/10.1002/wrna.4
  24. Cytoplasmic expression of the ELAV-like protein HuR as a potential prognostic marker in esophageal squamous cell carcinoma vol.35, pp.1, 2014, https://doi.org/10.1007/s13277-013-1008-4
  25. Certain Adenylated Non-Coding RNAs, Including 5′ Leader Sequences of Primary MicroRNA Transcripts, Accumulate in Mouse Cells following Depletion of the RNA Helicase MTR4 vol.9, pp.6, 2014, https://doi.org/10.1371/journal.pone.0099430
  26. Cold-inducible RNA binding protein in mouse mammary gland development vol.48, pp.6, 2016, https://doi.org/10.1016/j.tice.2016.10.004
  27. 3q26-29 Amplification in head and neck squamous cell carcinoma: a review of established and prospective oncogenes vol.284, pp.17, 2017, https://doi.org/10.1111/febs.14061
  28. Dissecting the expression landscape of RNA-binding proteins in human cancers vol.15, pp.1, 2014, https://doi.org/10.1186/gb-2014-15-1-r14
  29. Guardian of Genetic Messenger-RNA-Binding Proteins vol.6, pp.1, 2016, https://doi.org/10.3390/biom6010004
  30. Inferring RBP-Mediated Regulation in Lung Squamous Cell Carcinoma vol.11, pp.5, 2016, https://doi.org/10.1371/journal.pone.0155354
  31. Interplay between Posttranscriptional and Posttranslational Interactions of RNA-Binding Proteins vol.409, pp.3, 2011, https://doi.org/10.1016/j.jmb.2011.03.064
  32. Seten: a tool for systematic identification and comparison of processes, phenotypes, and diseases associated with RNA-binding proteins from condition-specific CLIP-seq profiles vol.23, pp.6, 2017, https://doi.org/10.1261/rna.059089.116
  33. Predicting RNA-Protein Interactions Using Only Sequence Information vol.12, pp.1, 2011, https://doi.org/10.1186/1471-2105-12-489
  34. RNA regulatory networks in animals and plants: a long noncoding RNA perspective vol.14, pp.2, 2015, https://doi.org/10.1093/bfgp/elu017
  35. The RNA binding proteins RBM38 and DND1 are repressed in AML and have a novel function in APL differentiation vol.41, 2016, https://doi.org/10.1016/j.leukres.2015.12.006
  36. The expression of RNA-binding protein RBM38 decreased in renal cell carcinoma and represses renal cancer cell proliferation, migration, and invasion vol.39, pp.5, 2017, https://doi.org/10.1177/1010428317701635
  37. Mitochondrial ribosomes in cancer 2017, https://doi.org/10.1016/j.semcancer.2017.04.004
  38. RNA Binding Proteins in the miRNA Pathway vol.17, pp.1, 2015, https://doi.org/10.3390/ijms17010031
  39. Pleiotropic effects of methionine adenosyltransferases deregulation as determinants of liver cancer progression and prognosis vol.59, pp.4, 2013, https://doi.org/10.1016/j.jhep.2013.04.031
  40. Aberrant Regulation and Function of MicroRNAs in Cancer vol.24, pp.16, 2014, https://doi.org/10.1016/j.cub.2014.06.043
  41. Prediction of lncRNA-protein interactions using HeteSim scores based on heterogeneous networks vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-03986-1
  42. HuR cytoplasmic expression is associated with increased cyclin A expression and inferior disease-free survival in patients with gastrointestinal stromal tumours (GISTs) 2013, https://doi.org/10.1111/his.12148
  43. Expression of the ELAV-like protein HuR in the cytoplasm is associated with endometrial carcinoma progression vol.35, pp.12, 2014, https://doi.org/10.1007/s13277-014-2485-9
  44. Dynamics in multi-domain protein recognition of RNA vol.22, pp.3, 2012, https://doi.org/10.1016/j.sbi.2012.03.013
  45. RNA-binding proteins, multifaceted translational regulators in cancer vol.1849, pp.7, 2015, https://doi.org/10.1016/j.bbagrm.2014.10.001
  46. From specific to global analysis of posttranscriptional regulation in eukaryotes: posttranscriptional regulatory networks vol.11, pp.6, 2012, https://doi.org/10.1093/bfgp/els046
  47. Knockdown of hMex-3A by small RNA interference suppresses cell proliferation and migration in human gastric cancer cells vol.6, pp.3, 2012, https://doi.org/10.3892/mmr.2012.943
  48. Selective inhibition of microRNA accessibility by RBM38 is required for p53 activity vol.2, 2011, https://doi.org/10.1038/ncomms1519
  49. Regulatory RNA-binding proteins in senescence vol.11, pp.4, 2012, https://doi.org/10.1016/j.arr.2012.02.006
  50. RNA-binding protein RNPC1: acting as a tumor suppressor in breast cancer vol.14, pp.1, 2014, https://doi.org/10.1186/1471-2407-14-322
  51. Targeted mRNA Decay by RNA Binding Protein AUF1 Regulates Adult Muscle Stem Cell Fate, Promoting Skeletal Muscle Integrity vol.16, pp.5, 2016, https://doi.org/10.1016/j.celrep.2016.06.095
  52. Co- and post-transcriptional regulation of Rbm5 and Rbm10 in mouse cells as evidenced by tissue-specific, developmental and disease-associated variation of splice variant and protein expression levels vol.580, pp.1, 2016, https://doi.org/10.1016/j.gene.2015.12.070
  53. Compounds Interfering with Embryonic Lethal Abnormal Vision (ELAV) Protein–RNA Complexes: An Avenue for Discovering New Drugs 2017, https://doi.org/10.1021/acs.jmedchem.6b01871
  54. microRNAs and RNA-binding proteins vol.10, pp.6, 2013, https://doi.org/10.4161/rna.24641
  55. Characterization of Human Cyclin-Dependent Kinase 12 (CDK12) and CDK13 Complexes in C-Terminal Domain Phosphorylation, Gene Transcription, and RNA Processing vol.35, pp.6, 2015, https://doi.org/10.1128/MCB.01426-14
  56. Human antigen R as a predictive marker for response to gemcitabine-based chemotherapy in advanced cisplatin-resistant urothelial cancer vol.13, pp.2, 2016, https://doi.org/10.3892/ol.2016.5484
  57. Increased cell apoptosis in human lung adenocarcinoma and in vivo tumor growth inhibition by RBM10, a tumor suppressor gene vol.14, pp.4, 2017, https://doi.org/10.3892/ol.2017.6765
  58. RPiRLS: Quantitative Predictions of RNA Interacting with Any Protein of Known Sequence vol.23, pp.3, 2018, https://doi.org/10.3390/molecules23030540
  59. Mutational landscape of RNA-binding proteins in human cancers vol.15, pp.1, 2018, https://doi.org/10.1080/15476286.2017.1391436
  60. CIRBP is a novel oncogene in human bladder cancer inducing expression of HIF-1α vol.9, pp.10, 2018, https://doi.org/10.1038/s41419-018-1109-5
  61. RBM38 plays a tumor-suppressor role via stabilizing the p53-mdm2 loop function in hepatocellular carcinoma vol.37, pp.1, 2018, https://doi.org/10.1186/s13046-018-0852-x
  62. Prediction of RNA-protein interactions using conjoint triad feature and chaos game representation vol.9, pp.1, 2018, https://doi.org/10.1080/21655979.2018.1470721
  63. Cold-inducible RNA binding protein in cancer and inflammation vol.9, pp.2, 2018, https://doi.org/10.1002/wrna.1462