Thermal behavior of Flame Retardant Filled PLA-WF Bio-Composites

  • Choi, Seung-Woo (Lab. of Adhesion & Bio-Composites, Program in Environmental Materials Science) ;
  • Lee, Byoung-Ho (Lab. of Adhesion & Bio-Composites, Program in Environmental Materials Science) ;
  • Kim, Hyun-Joong (Lab. of Adhesion & Bio-Composites, Program in Environmental Materials Science) ;
  • Kim, Hee-Soo (Research Team for Biomass based Bioplastics and Bio-Composites,Research Institute for Agriculture & Life Science, Seoul National University)
  • Received : 2009.03.03
  • Accepted : 2009.03.12
  • Published : 2009.03.25

Abstract

This study examined the thermal stability of PLA-WF bio-composites. Wood flour (WF)-filled PLA bio-composites were reinforced with the flame retardants, Melamine pyrophosphate (MPP), resorcinol bis (diphenyl phosphate) (RDP) and zinc borate (ZB). The flame retardant was compounded with PLA and natural biodegradable filler. The thermal properties of the biodegradable polymer and bio-composites reinforced with the flame retardant were measured and analyzed by DSC, DMA and TGA. The results showed that the flame retardant-reinforced biodegradable bio-composite exhibited improved thermal properties.

Keywords

Acknowledgement

Supported by : Korea Forest Service

References

  1. Agrawal, J. P., D. C. Gupta, Y. Khare, and R. S. Satpute. 1991. Zinc Borate Complex as Flame-Retardardant Filler. Journal of Applied Polymer Science 43(2): 373-377 https://doi.org/10.1002/app.1991.070430216
  2. Cai, Y. B., Q. F. Wei, F. L. Huang, and W. D. Gao. 2008. Preparation and properties studies of halogen-free flame retardant form-stable phase change materials based on paraffin/high density polyethylene composites. Applied Energy 85(8):765-775 https://doi.org/10.1016/j.apenergy.2007.10.017
  3. Camino, G., L. Costa, and M. P. L. Dicortemiglia. 1991. Overview of Fire retardadant Mechnisms. Polymer Degradation and Stability 33(2): 131-154 https://doi.org/10.1016/0141-3910(91)90014-I
  4. Huda, M. S., A. K. Mohanty, L. T. Drzal, E. Schut, and M. Misra. 2005. "Green" composites from recycled cellulose and poly(lactic acid): Physico-mechanical and morphological properties evaluation. Journal of Materials Science 40(16): 4221-4229 https://doi.org/10.1007/s10853-005-1998-4
  5. Iovino, R., R. Zujjo, M. A. Rao, L. Cassar, and L. Gianfreda. 2008. Biodegradation of poly (lactic acid)/starch/coir biocomposites under controlled composting conditions. Polymer Degradation and Stability 93(1): 147-157 https://doi.org/10.1016/j.polymdegradstab.2007.10.011
  6. Kandola, B. K., A. R. Horrocks, and S. Horrocks. 2001. Complex char formation in flame-retarded fibre-intumescent combinations. Part V. Exploring different fibre/intumescent combinations. Fire and Materials 25(4): 153-160 https://doi.org/10.1002/fam.765
  7. Kim, H. S., B. H. Lee, S. W. Choi, S. Kim, and H.-J. Kim. 2007. The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites. Composites Part a-Applied Science and Manufacturing 38(6): 1473-1482 https://doi.org/10.1016/j.compositesa.2007.01.004
  8. Kim, H. S., H. S. Yang, and H.-J. Kim. 2005. Biodegradability and mechanical properties of Agro-Flour-filled polybutylene succinate biocomposites. Journal of Applied Polymer Science.97(4): 1513-1521 https://doi.org/10.1002/app.21905
  9. Kim, H.-S., H. S. Yang, H.-J. Kim, B. J. Lee, and T. S. Hwang. 2005. Thermal properties of agro-flour-filled biodegradable polymer bio-composites. Journal of Thermal Analysis and Calorimetry 81(2): 299-306 https://doi.org/10.1007/s10973-005-0782-7
  10. Lee, B.-H., H.-S. Kim, S.-W. Choi, and H.-J. Kim. 2006. Improvement of interfacial adhesion for surface treated rice husk flour-filled polypropylene bio-composites. Journal of the Korean Wood Science and Technology 34(3): 38-45
  11. Loo, S. C. J., C. P. Ooi, and Y. C. F. Boey. 2005. Influence of electron-beam radiation on the hydrolytic degradation behaviour of poly (lactideco-glycolide) (PLGA). Biomaterials 26(18): 3809-3817 https://doi.org/10.1016/j.biomaterials.2004.10.014
  12. Mohanty, A. K., M. Misra, and G. Hinrichsen. 2000. Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering 276(3): 1-24 https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W
  13. Murashko, E. A., G. F. Levchik, S. V. Levchik, D. A. Bright, and S. Dashevsky. 1999. Fire-retardant action of resorcinol bis(diphenyl phosphate) in PC-ABS blend. II. Reactions in the condensed phase. Journal of Applied Polymer Science 71(11): 1863-1872 https://doi.org/10.1002/(SICI)1097-4628(19990314)71:11<1863::AID-APP17>3.0.CO;2-O
  14. Nikolic, M. S. and J. Djonlagic. 2001. Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s. Polymer Degradation and Stability 74(2): 263-270 https://doi.org/10.1016/S0141-3910(01)00156-2
  15. Zhu, W. M., E. D. Weil, and S. Mukhopadhyay 1996. Intumescent flame-retardant system of phosphates and 5,5,5'5',5'',5''-hexamethyltris(1,3,2- dioxaphosphorinanemethan)amine 2,2',2''-trioxide for polyolefins. Journal of Applied Polymer Science 62(13): 2267-2280 https://doi.org/10.1002/(SICI)1097-4628(19961226)62:13<2267::AID-APP11>3.0.CO;2-0