Genetic diversity of Forsythia ovata Nakai (Oleaceae) based on inter-simple sequence repeats (ISSR)

ISSR 자료에 기초한 만리화(물푸레나무과)의 유전적 다양성

  • Published : 2009.03.31

Abstract

We investigated the genetic diversity of an endemic rare species, Forsythia ovata Nakai by examining 93 ISSR amplicons in 84 individuals distributed among five populations. The overall percentage of polymorphic ISSR amplicons was 54.8% and mean number of amplicons per ISSR primer was 6.6. The amount of genetic diversity was relatively lower than other shrub species. The Mt. Seokbyeong and Mt. Seorak B populations had the highest level of genetic diversity. Although the Seokgae-jae population had the lowest level of genetic diversity, the population was genetically the most distinctive from the other populations. About 30.6% of the total variation was allocated between five populations, which was slightly higher than other shrub species. Such a pattern of genetic variation may have resulted from the limited distribution and small population sizes of F. ovata. The UPGMA dendrogram based on Nei's genetic distance showed some decisive geographic patterns. These results suggest that, in addition to the preservation of the natural stands, the conservation of larger number of populations with small number of individuals per population is more effective for the dynamic ex situ conservation and for maintaining the genetic diversity of F. ovata than smaller number of populations with large number of individuals.

우리나라 특산식물이며 희귀식물인 만리화(물푸레나무과) 집단의 유전적 다양성을 조사하기 위하여 5 집단 84개체에 대한 ISSR (Inter-Simple Sequence Repeats) 표지자 분석을 실시하였다. 14개의 ISSR 프라이머에서 총 93개의 증폭산물을 관찰할 수 있었으며, 유전적 다양성을 나타내는 P (Percentage of polymorphic loci)값과 S.I. (Shannon's information Index)가 다른 관목류에 비해 비교적 낮게 나타났다. 집단별 유전적 다양성은 석병산집단 (P = 64.5%, S.I. = 0.281)과 설악산B집단(P = 62.4%, S.I. = 0.292)이 높았으며, 석개재집단(P = 37.6%, S.I. = 0.178)이 가장 낮았다. 전체 유전변이 중 30.6%가 집단간에 기인하는 것으로 나타났고, 나머지 69.4%는 집단내 개체간의 차이에서 기인하였다. 이러한 결과는 분포역이 매우 제한되어 있으며 불연속적으로 출연하는 희귀종이라는 점으로 미루어 볼 때 지역간의 유전자 교류가 원활하지 못해 나타난 결과라고 추정해 볼 수 있다. 유전적 거리를 이용하여 UPGMA 방법에 의한 유집분석을 실시한 결과, 집단의 지리적 격리정도와 유전적 연관성은 비교적 일치하는 경향이었다. 본 연구 결과, 만리화의 유전자원보존을 위해서는 자생지 보호와 더불어 동적인 현지외 보존(dynamic ex situ conservation)과 같은 보다 적극적인 대책이 요구되며, 더 높은 유전적 다양성을 확보하기 위해서는 소수의 집단에서 다수 개체를 선발하기보다는 집단당 소수 개체를 다수의 집단에서 선발하는 집단 위주의 보존이 더욱 효과적일 것으로 판단된다.

Keywords

Acknowledgement

Supported by : 국립수목원

References

  1. Avise, J. C. 1994. Molecular markers, natural history and evolution. Chapman and Hall, London
  2. Bachmann, K. 1994. Molecular markers in plant ecology. New Phytologist 126: 403-418 https://doi.org/10.1111/j.1469-8137.1994.tb04242.x
  3. Camacho, F. J. and A. Liston. 2001. Population structure and genetic diversity of Botrychium pumicola (Ophioglossaceae) based on inter-simple sequence repeats (ISSR). Amer. J. Bot. 88: 1065-1070 https://doi.org/10.2307/2657089
  4. Chalesworth, D. and B. Chalesworth. 1995. Quantitative genetics in plants: the effect of the breeding system on genetic variability. Evolution 49(5): 911-920 https://doi.org/10.2307/2410413
  5. Choi, H.-S., K.-N. Hong, J.-M. Chung and B.-Y. Kang. 2004. Genetic diversity and spatial genetic structure of Empetrum nigrum var. japonicum in Mt. Halla, South Korea. Jour. Korean For. Soc. 93(3): 175-180 (in Korean)
  6. Chung, J. M., B. C. Lee, J. S. Kim, C.-W. Park, M. Y. Chung and M. G. Chung. 2006. Fine-scale genetic structure among genetic individuals of the clone-forming monotypic genus Echinosophora koreensis (Fabaceae). Ann. Bot. 98: 165-173 https://doi.org/10.1093/aob/mcl083
  7. Doyle, J. J. and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15 https://doi.org/10.1016/0031-9422(80)85004-7
  8. Edwards. M. A. and J. L. Hamrick. 1995. Genetic variation in shortleaf pine, Pinus echinata Mill(Pinaceae). Forest Genetics 2: 21-28
  9. Ellstrand, N. C. and D. R. Elam. 1993 Population genetic consequences of small population size; implications for plant conservation. Annual Review of Ecological Systematics 24: 217-242 https://doi.org/10.1146/annurev.es.24.110193.001245
  10. Excoffier, L., P. Smouse and J. Quattro. 1992. Analysis of molecular variance inferred from metric distance among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131: 479-491
  11. Ge, X-J., Y. Yu, N.-X. Zhao, H.-S. Chen and W.-Q. Qi. 2003. Genetic variation in the endangered Inner Mongolia endemic shrub Tetraena mongolica Maxim. (Zygophyllaceae). Biological Conservation 111: 427-434 https://doi.org/10.1016/S0006-3207(02)00312-9
  12. Ge, X-J., Y. Yu, Y.-M. Yuan, H.-W. Huang and C. Yan. 2005. Genetic diversity and geographic differentiation in endangered Ammopiptanthus (Leguminosae) populations in desert regions of northwest China as revealed by ISSR analysis. Ann. Bot. 95: 843-851
  13. Godt, M. J. W., B. R. Johnson and J. L. Hamrick. 1996. Genetic diversity and population size in four rare southern Appalachian plant species. Conservation Biology 10(3): 796-805 https://doi.org/10.1046/j.1523-1739.1996.10030796.x
  14. Govindaraju, D. R. 1988. Relationship between dispersal ability and levels of gene flow in plants. Oikos 52: 31-35 https://doi.org/10.2307/3565978
  15. Grashof-Bokdam, C. J., J. Jansen and M. J. M. Smulders. 1998. Dispersal patterns of Lonicera periSclymenum determined by genetic analysis. Molecular Ecology 7: 165-174 https://doi.org/10.1046/j.1365-294x.1998.00327.x
  16. Hamrick, J. L., M. J. W. Godt, D. A. Murawski and M. D. Loveless. 1991. Correlations between species traits and allozyme diversity: Implications for conservation biology. In Genetics and Conservation of Rare Plants. Falk, D. and K. Holsinger (eds.), Oxford Press, London. Pp. 75-86
  17. Hamrick, J. L., M. J. W. Godt and S. L. Sherman-Broyles. 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests 6: 95-124 https://doi.org/10.1007/BF00120641
  18. Hamrick, J. L. and M. J. W. Godt. 1996. Conservation genetics of endemic plant species. In Conservation Genetics. Avise, J. C. and J. L. Hamrick (eds.), Chapman and Hall, New York. Pp. 281-304
  19. Han, S.-D., Y.-P. Hong, H.-Y. Kwon, B.-H. Yang and C.-S. Kim. 2005. Genetic variation of two isolated relict populations of Vaccinium uliginosum L. in Korea. Jour. Korean For. Soc. 94(4): 209-213 (in Korean)
  20. Hong, K.-N., K.-J. Cho, Y.-H. Park., S.-D. Hur, Y.-P. Hong and B.-Y. Kang. 2000. Genetic variation of some patches of Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. in Korea. Korean For. Soc. 89(5): 645-654 (in Korean)
  21. Hong, Y.-P., H.-Y. Kwon, Y.-Y. Kim and C.-S. Kim. 2003. Distribution of I-SSR variants in natural populations of smile rosebay (Rhododendron schlippenbachii Maxim.) in Korea. Jour. Korean For. Soc. 92(5): 497-503
  22. Hong, Y.-P., M.-J. Kim and K.-N. Hong. 2003. Generics diversity in natural populations of two geographic isolates of Korean black raspberry. The Journal of Horticultural Science & Biotechnology 78: 350-354
  23. Jeong, J.-H., K.-S. Kim, C.-H. Lee and Z.-S. Kim. 2007. Genetic diversity and spatial structure in populations of Abelia tyaihyoni. Jour. Korean For. Soc. 96(6): 667-675 (in Korean)
  24. Jin, Z. and J. Li. 2007. Genetic differentiation in endangered Heptacodium miconioides Rehd. based on ISSR polymorphism and implications for its conservation. Forest Ecology and Management 245: 130-136 https://doi.org/10.1016/j.foreco.2007.04.007
  25. Kim, K.-R., S.-C. Kang and J.-M. Lee. 1984. Characteristics, fertility, seed germination, and chemical control of branching habit in Forsythia species. Res. Coll. of Inst. of Food Dev., Kyung Hee Univ. 5: 5-19 (in Korean)
  26. Kim, J. K. and S. K. Kim. 1982. On the anatomical properties of Forsythia ovata. Jour. Jinju Nat'l Agr. & For. Tech. Coll. 20: 123-127 (in Korean)
  27. Kim, Y.-D., K.-J. Kim, S.-H. Kim and H. T. Kim. 2007. Genetic diversity in three populations of Hibiscus hamabo (Malvaceae) in Jeju Island, Korea. Korean J. Pl. Taxon. 37(2): 115-129 (in Korean)
  28. Kj$\varnothing$ lner, S., S. M. S$\aa$stad, P. Taberlet and C. Brochmann. 2004. Amplified fragment length polymorphism versus random amplified polymorphic DNA markers: clonal diversity in Saxifraga cernua. Molecular Ecology 13(1): 81-86 https://doi.org/10.1046/j.1365-294X.2003.02037.x
  29. Ledig, F. T. and M. T. Conkle. 1983. Gene diversity and genetic structure in a narrow endemic. Torrey pine Pinus torreyana Parry ex Carr. Evolution 37: 79-85 https://doi.org/10.2307/2408176
  30. Lee. S. W., Y. M. Kim, W. W. Kim and J. M. Chung. 2002. Genetic variation of I-SSR markers in the natural populations of a rare and endangered tree species. Oplopanax elatus in Korea. Jour. Korean For. Soc. 91: 565-573
  31. Lee, Y. M. and W. Y. Lee. 2000. Illustrated rare and endangered species in Korea. Korea National Arboretum. P. 194 (in Korean)
  32. McDermott, J. M. and B. A. McDonald. 1993. Gene flow in plant pathosystems. Annual Review of Phytopathology 31: 353-373 https://doi.org/10.1146/annurev.py.31.090193.002033
  33. Milligan, B. G., J. Leebens-Mack and A. E. Sttrand. 1994. Conservation genetics: beyond the maintenance of marker diversity. Molecular Ecology 12: 844-855
  34. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590
  35. Nybom, H. and I. V. Bartish. 2000. Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspectives in Plant Ecology, Evolution and Systematics 3: 93-114
  36. Palmer, J. D. 1986. Isolation and structural analysis of chloroplast DNA. Meth. Enzymol. 118: 167-186 https://doi.org/10.1016/0076-6879(86)18072-4
  37. Schneider, S., D. Roessli and L. Excoffier. 2000. Arlequin V2.0. A software for population genetics data analysis. Dept. of Anthropology and Ecology, University of Geneva, Geneva
  38. Shannon, C. E. 1948. A mathematical theory of communication. Bell System Tech. J. 27: 379-423
  39. Slatkin, M. 1987. Gene flow and the geographic structure of natural populations. Science 236: 787-792 https://doi.org/10.1126/science.3576198
  40. Sneath, P. H. A. and R. R. Sokal. 1973. Numerical Taxonomy, Freeman San Francisco, CA. P. 573
  41. Sydes, M. A. and R. Peakall. 1998. Extensive clonality in the endangered shrub Haloragodendron lucasii (Haloragaceae) revealed by allozymes and RAPDs. Molecular Ecology 7: 87-93 https://doi.org/10.1046/j.1365-294x.1998.00314.x
  42. Weller, S. G., A. K. Sakai and C. Straub. 1996. Allozyme diversity and genetic identity in Schiedea and Alsinidendron (Caryophyllaceae: Alsinoideae) in the Hawaiian Islands. Evolution 50(1): 23-34 https://doi.org/10.2307/2410777
  43. Wright, S. 1951. The genetic structure of populations. Ann. Eugen. 15: 313-354
  44. Xiao, L.-Q., X.-J. Ge, X. Gong, G. Hao and S.-X. Zheng. 2004. ISSR variation in the endemic and endangered plant Cycas guizhouensis (Cycadaceae). Ann. Bot. 94: 133-138 https://doi.org/10.1093/aob/mch119
  45. Xiao, M., Q. Li, L. Wang, L. Guo, J. Li, L. Tang and F. Chen. 2006. ISSR analysis of the genetic diversity of the endangered species Sinopodophyllum hexandrum (Royle) Ying from Western Sichuan Province, China. J. Integrative Plant Biology 48: 1140-1146 https://doi.org/10.1111/j.1744-7909.2006.00304.x
  46. Yeh, F. C., R. C. Yang and T. Boyle. 1999. POPGENE. Microsoft Windows-based freeware for population genetic analysis. Release 1.31. Edmonton: University of Alberta, Canada