DOI QR코드

DOI QR Code

Insulin resistance and Alzheimer's disease

  • De La Monte, Suzanne M. (Departments of Neurology, Pathology, and Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University)
  • Published : 2009.08.31

Abstract

Emerging data demonstrate pivotal roles for brain insulin resistance and insulin deficiency as mediators of cognitive impairment and neurodegeneration, particularly Alzheimer's disease (AD). Insulin and insulin-like growth factors (IGFs) regulate neuronal survival, energy metabolism, and plasticity, which are required for learning and memory. Hence, endogenous brain-specific impairments in insulin and IGF signaling account for the majority of AD-associated abnormalities. However, a second major mechanism of cognitive impairment has been linked to obesity and Type 2 diabetes (T2DM). Human and experimental animal studies revealed that neurodegeneration associated with peripheral insulin resistance is likely effectuated via a liver-brain axis whereby toxic lipids, including ceramides, cross the blood brain barrier and cause brain insulin resistance, oxidative stress, neuro-inflammation, and cell death. In essence, there are dual mechanisms of brain insulin resistance leading to AD-type neurodegeneration: one mediated by endogenous, CNS factors; and the other, peripheral insulin resistance with excess cytotoxic ceramide production.

Keywords

References

  1. de la Monte, S. M. and Wands J. R. (2005) Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer's disease. J. Alzheimers. Dis. 7, 45-61 https://doi.org/10.3233/JAD-2005-7106
  2. Steen, E., Terry, B. M., Rivera, E. J., Cannon, J. L., Neely, T. R., Tavares, R., Xu, X. J., Wands, J. R. and de la Monte, S. M. (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease--is this type 3 diabetes? J. Alzheimers. Dis. 7, 63-80 https://doi.org/10.3233/JAD-2005-7107
  3. de la Monte, S. M. and Wands, J. R. (2008) Alzheimer's disease is type 3 diabetes: evidence reviewed. J. Diabetes. Sci. Tech. 2, 1101-1113 https://doi.org/10.1177/193229680800200619
  4. D'Ercole, A. J., Ye, P., Calikoglu, A. S. and Gutierrez- Ospina, G. (1996) The role of the insulin-like growth factors in the central nervous system. Mol. Neurobiol. 13, 227-255 https://doi.org/10.1007/BF02740625
  5. Wozniak, M., Rydzewski, B., Baker, S. P. and Raizada, M. K. (1993) The cellular and physiological actions of insulin in the central nervous system. Neurochem. Int. 22, 1-10 https://doi.org/10.1016/0197-0186(93)90062-A
  6. Lester-Coll, N., Rivera, E. J., Soscia, S. J., Doiron, K., Wands, J. R. and de la Monte, S. M. (2006) Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer's disease. J. Alzheimers. Dis. 9, 13-33 https://doi.org/10.3233/JAD-2006-9102
  7. Rivera, E. J., Goldin, A., Fulmer, N., Tavares, R., Wands, J. R. and de la Monte, S. M. (2005) Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer's disease: link to brain reductions in acetylcholine. J. Alzheimers. Dis. 8, 247-268 https://doi.org/10.3233/JAD-2005-8304
  8. Ullrich, A., Bell, J. R., Chen, E. Y., Herrera, R., Petruzzelli, L. M., Dull, T. J., Gray, A., Coussens, L., Liao, Y. C. and Tsubokawa, M. (1985) Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313, 756-761 https://doi.org/10.1038/313756a0
  9. Shpakov, A. O. and Pertseva, M. N. (2000) Structural and functional characterization of insulin receptor substrate proteins and the molecular mechanisms of their interaction with insulin superfamily tyrosine kinase receptors and effector proteins. Membr. Cell. Biol. 13, 455-484
  10. Giovannone, B., Scaldaferri, M. L., Federici, M., Porzio, O., Lauro, D., Fusco, A., Sbraccia, P., Borboni, P., Lauro, R. and Sesti, G. (2000) Insulin receptor substrate (IRS) transduction system: distinct and overlapping signaling potential. Diabetes. Metab. Res. Rev. 16, 434-441 https://doi.org/10.1002/1520-7560(2000)9999:9999<::AID-DMRR159>3.0.CO;2-8
  11. Sun, X. J., Crimmins, D. L., Myers, M. J., Miralpeix, M. and White, M. F. (1993) Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1. Mol. Cell. Biol. 13, 7418-7428 https://doi.org/10.1128/MCB.13.12.7418
  12. Lam, K., Carpenter, C. L., Ruderman, N. B., Friel, J. C. and Kelly, K. L. (1994) The phosphatidylinositol 3-kinase serine kinase phosphorylates IRS-1. Stimulation by insulin and inhibition by Wortmannin. J. Biol. Chem. 269, 20648-20652
  13. Dudek, H., Datta, S. R., Franke, T. F., Birnbaum, M. J., Yao, R., Cooper, G. M., Segal, R. A., Kaplan, D. R. and Greenberg, M. E. (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt [see comments]. Science 275, 661-665 https://doi.org/10.1126/science.275.5300.661
  14. Condorelli, F., Salomoni, P., Cotteret, S., Cesi, V., Srinivasula, S. M., Alnemri. E. S. and Calabretta, B. (2001) Caspase cleavage enhances the apoptosis-inducing effects of BAD. Mol. Cell. Biol. 21, 3025-3036 https://doi.org/10.1128/MCB.21.9.3025-3036.2001
  15. Halestrap, A. P., Doran, E., Gillespie, J. P. and O'Toole, A. (2000) Mitochondria and cell death. Biochem. Soc. Trans. 28, 170-177 https://doi.org/10.1042/bst0280170
  16. Hoyer, S. and Nitsch, R. (1989) Cerebral excess release of neurotransmitter amino acids subsequent to reduced cerebral glucose metabolism in early-onset dementia of Alzheimer type. J. Neural. Transm. 75, 227-232 https://doi.org/10.1007/BF01258634
  17. Hoyer, S. (2000) Brain glucose and energy metabolism abnormalities in sporadic Alzheimer disease. Causes and consequences: an update. Exp. Gerontol. 35, 1363-1372 https://doi.org/10.1016/S0531-5565(00)00156-X
  18. Hoyer, S. (2004) Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur. J. Pharmacol. 490, 115-125 https://doi.org/10.1016/j.ejphar.2004.02.049
  19. Pete, G., Fuller, C. R., Oldham, J. M., Smith, D. R., D'Ercole, A. J., Kahn, C. R. and Lund, P. K. (1999) Postnatal growth responses to insulin-like growth factor I in insulin receptor substrate-1-deficient mice. Endocrinology 140, 5478-5487 https://doi.org/10.1210/en.140.12.5478
  20. Schubert, M., Brazil, D. P., Burks, D. J., Kushner, J. A., Ye, J., Flint, C. L., Farhang-Fallah, J., Dikkes, P., Warot, X. M., Rio, C., Corfas, G. and White, M. F. (2003) Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J. Neurosci. 23, 7084- 7092
  21. Ait-Ghezala, G., Abdullah, L., Crescentini, R., Crawford, F., Town, T., Singh, S., Richards, D., Duara, R. and Mullan, M. (2002) Confirmation of association between D10S583 and Alzheimer's disease in a case--control sample. Neurosci. Lett. 325, 87-90 https://doi.org/10.1016/S0304-3940(02)00243-4
  22. Hong, M. and Lee, V. M. (1997) Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. J. Biol. Chem. 272, 19547-19553 https://doi.org/10.1074/jbc.272.31.19547
  23. Lovestone, S., Reynolds, C. H., Latimer, D., Davis, D. R., Anderton, B. H., Gallo, J. M., Hanger, D., Mulot, S., Marquardt, B., Stabel, S., Woodgett, J. R. and Miller, C. C. J. (1994) Alzheimer's disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells. Curr. Biol. 4, 1077-1086 https://doi.org/10.1016/S0960-9822(00)00246-3
  24. Doble, B. W. and Woodgett, J. R. (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell. Sci. 116, 1175-1186 https://doi.org/10.1242/jcs.00384
  25. De Ferrari, G. V. and Inestrosa, N. C. (2000) Wnt signaling function in Alzheimer's disease. Brain. Res. Brain. Res. Rev. 33, 1-12 https://doi.org/10.1016/S0165-0173(00)00021-7
  26. Chen, G. J., Xu, J., Lahousse, S. A., Caggiano, N. L. and de la Monte, S. M. (2003) Transient hypoxia causes Alzheimer-type molecular and biochemical abnormalities in cortical neurons: potential strategies for neuroprotection. J. Alzheimers. Dis. 5, 209-228 https://doi.org/10.3233/JAD-2003-5305
  27. Mandelkow, E. M., Stamer, K., Vogel, R., Thies, E. and Mandelkow, E. (2003) Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses. Neurobiol. Aging 24, 1079-1085 https://doi.org/10.1016/j.neurobiolaging.2003.04.007
  28. Gasparini, L., Netzer, W. J., Greengard, P. and Xu, H. (2002) Does insulin dysfunction play a role in Alzheimer's disease? Trends. Pharmacol. Sci. 23, 288-293 https://doi.org/10.1016/S0165-6147(02)02037-0
  29. Xie, L., Helmerhorst, E., Taddei, K., Plewright, B., Van Bronswijk, W. and Martins, R. (2002) Alzheimer's beta- amyloid peptides compete for insulin binding to the insulin receptor. J. Neurosci. 22, RC221
  30. Dore, S., Kar, S. and Quirion, R. (1997) Insulin-like growth factor I protects and rescues hippocampal neurons against beta-amyloid- and human amylin-induced toxicity. Proc. Natl. Acad. Sci. U.S.A. 94, 4772-4777 https://doi.org/10.1073/pnas.94.9.4772
  31. Zheng, W. H., Kar, S., Dore, S. and Quirion, R. (2000) Insulin-like growth factor-1 (IGF-1): a neuroprotective trophic factor acting via the Akt kinase pathway. J. Neural. Transm. Suppl. 60, 261-272
  32. McDermott, J. R. and Gibson, A. M. (1997) Degradation of Alzheimer's beta-amyloid protein by human and rat brain peptidases: involvement of insulin-degrading enzyme. Neurochem. Res. 22, 49-56 https://doi.org/10.1023/A:1027325304203
  33. Balasubramanian, A. S. (2001) Amyloid beta peptide processing, insulin degrading enzyme, and butyrylcholinesterase. Neurochem. Res. 26, 453-456 https://doi.org/10.1023/A:1010967602362
  34. Bernstein, H. G., Ansorge, S., Riederer, P., Reiser, M., Frolich, L. and Bogerts, B. (1999) Insulin-degrading enzyme in the Alzheimer's disease brain: prominent localization in neurons and senile plaques. Neurosci. Lett. 263, 161-164 https://doi.org/10.1016/S0304-3940(99)00135-4
  35. Cook, D. G., Leverenz, J. B., McMillan, P. J., Kulstad, J. J., Ericksen, S., Roth, R. A., Schellenberg, G. D., Jin, L. W., Kovacina, K. S. and Craft, S. (2003) Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer's disease is associated with the apolipoprotein E-epsilon4 allele. Am. J. Pathol. 162, 313-319 https://doi.org/10.1016/S0002-9440(10)63822-9
  36. Hoyer, S. (2002) The aging brain. Changes in the neuronal insulin/insulin receptor signal transduction cascade trigger late-onset sporadic Alzheimer disease (SAD). A minireview. J. Neural. Transm. 109, 991-1002 https://doi.org/10.1007/s007020200082
  37. Szkudelski, T. (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res. 50, 537-546
  38. Duelli, R., Schrock, H., Kuschinsky, W. and Hoyer, S. (1994) Intracerebroventricular injection of streptozotocin induces discrete local changes in cerebral glucose utilization in rats. Int. J. Dev. Neurosci. 12, 737-743 https://doi.org/10.1016/0736-5748(94)90053-1
  39. Hoyer, S., Lee, S. K., Loffler, T. and Schliebs, R. (2000) Inhibition of the neuronal insulin receptor. An in vivo model for sporadic Alzheimer disease? Ann. N. Y. Acad. Sci. 920, 256-258 https://doi.org/10.1111/j.1749-6632.2000.tb06932.x
  40. de la Monte, S. M., Tong, M., Lester-Coll, N., Plater, M., Jr. and Wands, J. R. (2006) Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer's disease. J. Alzheimers. Dis. 10, 89-109 https://doi.org/10.3233/JAD-2006-10113
  41. Craft, S. (2007) Insulin resistance and Alzheimer's disease pathogenesis: potential mechanisms and implications for treatment. Curr. Alzheimer. Res. 4, 147-152 https://doi.org/10.2174/156720507780362137
  42. de la Monte, S. M., Neusner, A., Chu, J. and Lawton, M. (2009) Epidemilogical trends strongly suggest exposures as etiologic agents in the pathogenesis of sporadic Alzheimer's disease, diabetes mellitus, and non- alcoholic steatohepatitis. J. Alzheimers. Dis. 17, 519-529 https://doi.org/10.3233/JAD-2009-1070
  43. Pasquier, F., Boulogne, A., Leys, D. and Fontaine, P. (2006) Diabetes mellitus and dementia. Diabetes. Metab. 32, 403-414 https://doi.org/10.1016/S1262-3636(07)70298-7
  44. Martins, I. J., Hone, E., Foster, J. K., Sunram-Lea, S. I., Gnjec, A., Fuller, S. J., Nolan, D., Gandy, S. E. and Martins, R. N. (2006) Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer's disease and cardiovascular disease. Mol. Psychiatry. 11, 721-736 https://doi.org/10.1038/sj.mp.4001854
  45. Winocur, G., Greenwood, C. E., Piroli, G. G., Grillo, C. A., Reznikov, L. R., Reagan, L. P. and McEwen, B. S. (2005) Memory impairment in obese Zucker rats: an investigation of cognitive function in an animal model of insulin resistance and obesity. Behav. Neurosci. 119, 1389- 1395 https://doi.org/10.1037/0735-7044.119.5.1389
  46. Landreth, G. (2007) Therapeutic use of agonists of the nuclear receptor PPARgamma in Alzheimer's disease. Curr. Alzheimer. Res. 4, 159-164 https://doi.org/10.2174/156720507780362092
  47. Reger, M. A., Watson, G. S., Green, P. S., Wilkinson, C. W., Baker, L. D., Cholerton, B., Fishel, M. A., Plymate, S. R., Breitner, J. C., Degroodt, W., Mehta, P. and Craft, S. (2008) Intranasal insulin improves cognition and modulates {beta}-amyloid in early AD. Neurology 70, 440-448 https://doi.org/10.1212/01.WNL.0000265401.62434.36
  48. Nicolls, M. R. (2004) The clinical and biological relationship between Type II diabetes mellitus and Alzheimer's disease. Curr. Alzheimer. Res. 1, 47-54 https://doi.org/10.2174/1567205043480555
  49. Lyn-Cook, L. E., Lawton, M., Tong, M., Silbermann, E., Longato, L., Jiao, P., Mark, P., Wands, J. R., Xu, H. and de la Monte, S. M. (2008) Hepatic ceramide mediates brain insulin resistance and neurodegeneration in obesity with type 2 diabetes mellitus and Non-alcoholoic steatohepatitis. J. Alzheimer's Dis. 16, 715-729
  50. Elwing, J. E., Lustman, P. J., Wang, H. L. and Clouse, R. E. (2006) Depression, anxiety, and nonalcoholic steatohepatitis. Psychosom. Med. 68, 563-569 https://doi.org/10.1097/01.psy.0000221276.17823.df
  51. Perry, W., Hilsabeck, R. C. and Hassanein, T. I. (2008) Cognitive dysfunction in chronic hepatitis C: a review. Dig. Dis. Sci. 53, 307-321 https://doi.org/10.1007/s10620-007-9896-z
  52. Tong, M., Lawton, M., Neusner, A., Longato, L., Wands, J. R. and de la Monte, S. M. (2009) Nitrosamine-mediated type 2 diabetes mellitus, hepatic steatosis, and alzheimer- type neurodegeneration: potential role of environmental exposures in our insulin resistance diseases pandemic. J. Alzheimers. Dis. (In press)
  53. Capeau, J. (2008) Insulin resistance and steatosis in humans. Diabetes Metab. 34, 649-657 https://doi.org/10.1016/S1262-3636(08)74600-7
  54. Holland, W. L. and Summers, S. A. (2008) Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr. Rev. 29, 381-402 https://doi.org/10.1210/er.2007-0025
  55. Summers, S. A. (2006) Ceramides in insulin resistance and lipotoxicity. Prog. Lipid. Res. 45, 42-72 https://doi.org/10.1016/j.plipres.2005.11.002
  56. Hajduch, E., Balendran, A., Batty, I. H., Litherland, G. J., Blair, A. S., Downes, C. P. and Hundal, H. S. (2001) Ceramide impairs the insulin-dependent membrane recruitment of protein kinase B leading to a loss in downstream signalling in L6 skeletal muscle cells. Diabetologia 44, 173-183 https://doi.org/10.1007/s001250051596
  57. Arboleda, G., Huang, T. J., Waters, C., Verkhratsky, A., Fernyhough, P. and Gibson, R. M. (2007) Insulin-like growth factor-1-dependent maintenance of neuronal metabolism through the phosphatidylinositol 3-kinase-Akt pathway is inhibited by C2-ceramide in CAD cells. Eur. J. Neurosci. 25, 3030-3038 https://doi.org/10.1111/j.1460-9568.2007.05557.x
  58. Tong, M. and de la Monte, S. M. (2009) Ceramide- mediated neurodegeneration: relevance to Diabetes-associated neurodegeneration. J. Alzheimers. Dis. 16, 705-714 https://doi.org/10.3233/JAD-2009-0983

Cited by

  1. Insulin resistance in Alzheimer disease: Is heme oxygenase-1 an Achille's heel? vol.84, 2015, https://doi.org/10.1016/j.nbd.2015.02.013
  2. TCF7L2 polymorphism and cognitive test performance in cardiovascular disease vol.12, pp.2, 2012, https://doi.org/10.1111/j.1479-8301.2011.00398.x
  3. AMP-activated protein kinase: a potential player in Alzheimer’s disease vol.118, pp.4, 2011, https://doi.org/10.1111/j.1471-4159.2011.07331.x
  4. Amelioration of Diabetes-induced Cognitive Deficits by GSK-3β Inhibition is Attributed to Modulation of Neurotransmitters and Neuroinflammation vol.50, pp.2, 2014, https://doi.org/10.1007/s12035-014-8632-x
  5. Type 2 Diabetes and Mild Cognitive Impairment* vol.39, pp.8, 2012, https://doi.org/10.3724/SP.J.1206.2012.00352
  6. Can Better Management of Periodontal Disease Delay the Onset and Progression of Alzheimer’s Disease? vol.58, pp.2, 2017, https://doi.org/10.3233/JAD-170046
  7. Early limited nitrosamine exposures exacerbate high fat diet-mediated type 2 diabetes and neurodegeneration vol.10, pp.1, 2010, https://doi.org/10.1186/1472-6823-10-4
  8. Neuroinflammation is not a Prerequisite for Diabetes-induced Tau Phosphorylation vol.9, 2015, https://doi.org/10.3389/fnins.2015.00432
  9. DPP4 Inhibitors Can Be a Drug of Choice for Type 3 Diabetes: A Mini Review 2017, https://doi.org/10.1177/1533317517722005
  10. The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease vol.96, pp.4, 2011, https://doi.org/10.1016/j.nlm.2011.08.003
  11. Stimulation of Suicidal Erythrocyte Death by Fumagillin vol.112, pp.5, 2013, https://doi.org/10.1111/bcpt.12033
  12. Brain Gene Expression of a Sporadic (icv-STZ Mouse) and a Familial Mouse Model (3xTg-AD Mouse) of Alzheimer’s Disease vol.7, pp.12, 2012, https://doi.org/10.1371/journal.pone.0051432
  13. Withaferin A-stimulated Ca2+ entry, ceramide formation and suicidal death of erythrocytes vol.27, pp.1, 2013, https://doi.org/10.1016/j.tiv.2012.09.004
  14. Elevated risk of type 2 diabetes for development of Alzheimer disease: A key role for oxidative stress in brain vol.1842, pp.9, 2014, https://doi.org/10.1016/j.bbadis.2014.06.010
  15. Insulin and Insulin-Sensitizing Drugs in Neurodegeneration: Mitochondria as Therapeutic Targets vol.2, pp.3, 2009, https://doi.org/10.3390/ph2030250
  16. Stimulation of suicidal death of erythrocytes by rifampicin vol.302, pp.2-3, 2012, https://doi.org/10.1016/j.tox.2012.10.006
  17. Moieties in antidiabetic drugs as a target of insulin receptors in association with common neurological disorders vol.4, pp.4, 2016, https://doi.org/10.3892/br.2016.616
  18. Protective effect of valproic acid in streptozotocin-induced sporadic Alzheimer’s disease mouse model: possible involvement of the cholinergic system vol.390, pp.6, 2017, https://doi.org/10.1007/s00210-017-1357-4
  19. Features of molecule expression markers of insulin resistance in experimental Alzheimer’s disease vol.61, pp.4, 2015, https://doi.org/10.14341/probl201561443-48
  20. Traumatic brain injury and obesity induce persistent central insulin resistance vol.43, pp.8, 2016, https://doi.org/10.1111/ejn.13194
  21. Modulatory effects of vitamin E, acetyl-l-carnitine and α-lipoic acid on new potential biomarkers for Alzheimer's disease in rat model vol.64, pp.6, 2012, https://doi.org/10.1016/j.etp.2010.11.012
  22. Increases in β-amyloid protein in the hippocampus caused by diabetic metabolic disorder are blocked by minocycline through inhibition of NF-κB pathway activation vol.63, pp.2, 2011, https://doi.org/10.1016/S1734-1140(11)70504-7
  23. Type 2 Diabetes Mellitus: A Potentially Modifiable Risk Factor for Neurochemical Brain Changes in Bipolar Disorders vol.77, pp.3, 2015, https://doi.org/10.1016/j.biopsych.2013.11.007
  24. Insulin Resistance Prevents AMPK-induced Tau Dephosphorylation through Akt-mediated Increase in AMPKSer-485Phosphorylation vol.290, pp.31, 2015, https://doi.org/10.1074/jbc.M115.636852
  25. Executive functions in patients with Alzheimer's disease, type 2 diabetes mellitus patients and cognitively healthy older adults vol.83, 2016, https://doi.org/10.1016/j.exger.2016.07.013
  26. Metabolic-cognitive syndrome: A cross-talk between metabolic syndrome and Alzheimer's disease vol.9, pp.4, 2010, https://doi.org/10.1016/j.arr.2010.04.007
  27. Effects of Aging and Experimentally Induced Modifications of Signal Pathways on Insulin-Induced Shifts of Glucose Metabolism in the Rat Neocortex vol.47, pp.1, 2015, https://doi.org/10.1007/s11062-015-9491-4
  28. Alterations in Hippocampal Oxidative Stress, Expression of AMPA Receptor GluR2 Subunit and Associated Spatial Memory Loss by Bacopa monnieri Extract (CDRI-08) in Streptozotocin-Induced Diabetes Mellitus Type 2 Mice vol.10, pp.7, 2015, https://doi.org/10.1371/journal.pone.0131862
  29. Revenge of the “sit” II: Does lifestyle impact neuronal and cognitive health through distinct mechanisms associated with sedentary behavior and physical activity? vol.7, pp.1, 2014, https://doi.org/10.1016/j.mhpa.2014.01.001
  30. P300 auditory event-related potentials in children with obesity: is childhood obesity related to impairment in cognitive functions? vol.12, pp.7, 2011, https://doi.org/10.1111/j.1399-5448.2010.00748.x
  31. Alzheimer's Disease Promotion by Obesity: Induced Mechanisms—Molecular Links and Perspectives vol.2012, 2012, https://doi.org/10.1155/2012/986823
  32. Glibenclamide treatment modulates the expression and localization of myosin-IIB in diabetic rat brain vol.340, pp.1-2, 2014, https://doi.org/10.1016/j.jns.2014.03.020
  33. Neuroprotective effects of dietary restriction: Evidence and mechanisms vol.40, 2015, https://doi.org/10.1016/j.semcdb.2015.03.004
  34. Obesity Reduces Cognitive and Motor Functions across the Lifespan vol.2016, 2016, https://doi.org/10.1155/2016/2473081
  35. Cognitive dysfunction profile and arterial stiffness in type 2 diabetes vol.322, pp.1-2, 2012, https://doi.org/10.1016/j.jns.2012.07.046
  36. The Effect of Insulin Infusion on the Metabolites in Cerebral Tissues Assessed With Proton Magnetic Resonance Spectroscopy in Young Healthy Subjects With High and Low Insulin Sensitivity vol.36, pp.9, 2013, https://doi.org/10.2337/dc12-1437
  37. High fat diet produces brain insulin resistance, synaptodendritic abnormalities and altered behavior in mice vol.67, 2014, https://doi.org/10.1016/j.nbd.2014.03.011
  38. Brain-Defective Insulin Signaling Is Associated to Late Cognitive Impairment in Post-Septic Mice 2016, https://doi.org/10.1007/s12035-016-0307-3
  39. Diabetes and Alzheimer Disease, Two Overlapping Pathologies with the Same Background: Oxidative Stress vol.2015, 2015, https://doi.org/10.1155/2015/985845
  40. Novel insights for the treatment of Alzheimer's disease vol.35, pp.2, 2011, https://doi.org/10.1016/j.pnpbp.2010.07.018
  41. Role of the Insulin-Like Growth Factor Type 1 Receptor in the Pathogenesis of Diabetic Encephalopathy vol.2015, 2015, https://doi.org/10.1155/2015/626019
  42. Brain metabolic stress and neuroinflammation at the basis of cognitive impairment in Alzheimer’s disease vol.7, 2015, https://doi.org/10.3389/fnagi.2015.00094
  43. Steroids and insulin resistance in pregnancy vol.139, 2014, https://doi.org/10.1016/j.jsbmb.2012.11.007
  44. Reversal of Metabolic Deficits by Lipoic Acid in a Triple Transgenic Mouse Model of Alzheimer's Disease: A 13C NMR Study vol.34, pp.2, 2014, https://doi.org/10.1038/jcbfm.2013.196
  45. Altered APP Processing in Insulin-Resistant Conditions Is Mediated by Autophagosome Accumulation via the Inhibition of Mammalian Target of Rapamycin Pathway vol.61, pp.12, 2012, https://doi.org/10.2337/db11-1735
  46. Chronic hyperglycemia induced via the heterozygous knockout of Pdx1 worsens neuropathological lesion in an Alzheimer mouse model vol.6, pp.1, 2016, https://doi.org/10.1038/srep29396
  47. Effects of C-glycosylation on anti-diabetic, anti-Alzheimer’s disease and anti-inflammatory potential of apigenin vol.64, 2014, https://doi.org/10.1016/j.fct.2013.11.020
  48. Aging: Thromboembolic Disease, Metabolic Syndrome, Type 2 Diabetes Mellitus, and Alzheimer’s Disease vol.04, pp.05, 2016, https://doi.org/10.4236/jbm.2016.45001
  49. Sphingosine but not Sphingosine-1-phosphate Stimulates Suicidal Erythrocyte Death vol.28, pp.2, 2011, https://doi.org/10.1159/000331750
  50. Overexpression of matrix metalloproteinase-9 (MMP-9) rescues insulin-mediated impairment in the 5XFAD model of Alzheimer’s disease vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-00794-5
  51. High-Fat Diet Induces Hepatic Insulin Resistance and Impairment of Synaptic Plasticity vol.10, pp.5, 2015, https://doi.org/10.1371/journal.pone.0128274
  52. Reprint of: ‘Brain insulin signaling: A key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes’ vol.96, pp.4, 2011, https://doi.org/10.1016/j.nlm.2011.11.001
  53. Sulindac Sulfide – Induced Stimulation of Eryptosis vol.30, pp.4, 2012, https://doi.org/10.1159/000341483
  54. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline vol.122, pp.4, 2012, https://doi.org/10.1172/JCI59903
  55. Calpain Determines the Propensity of Adult Hippocampal Neural Stem Cells to Autophagic Cell Death Following Insulin Withdrawal vol.33, pp.10, 2015, https://doi.org/10.1002/stem.2082
  56. Insulin Resistance and Neurodegeneration: Progress Towards the Development of New Therapeutics for Alzheimer’s Disease vol.77, pp.1, 2017, https://doi.org/10.1007/s40265-016-0674-0
  57. Neuroenergetics of traumatic brain injury vol.1, pp.2, 2015, https://doi.org/10.2217/cnc.15.9
  58. Exosomal biomarkers of brain insulin resistance associated with regional atrophy in Alzheimer's disease vol.38, pp.4, 2017, https://doi.org/10.1002/hbm.23494
  59. Brain insulin signaling: A key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes vol.96, pp.3, 2011, https://doi.org/10.1016/j.nlm.2011.08.005
  60. Alzheimer's disease and type 2 diabetes: Two diseases, one common link? vol.14, pp.3, 2013, https://doi.org/10.3109/15622975.2011.650204
  61. Insulin resistance in the nervous system vol.23, pp.3, 2012, https://doi.org/10.1016/j.tem.2011.12.004
  62. Cerebrospinal Fluid Aβ42Levels: When Physiological Become Pathological State vol.21, pp.12, 2015, https://doi.org/10.1111/cns.12476
  63. The effect of cognitive-motor dual-task training on cognitive function and plasma amyloid β peptide 42/40 ratio in healthy elderly persons: a randomized controlled trial vol.15, pp.1, 2015, https://doi.org/10.1186/s12877-015-0058-4
  64. Testosterone deficiency, insulin-resistant obesity and cognitive function vol.30, pp.4, 2015, https://doi.org/10.1007/s11011-015-9655-3
  65. Linking cardiometabolic disorders to sporadic Alzheimer’s disease: a perspective on potential mechanisms and mediators vol.115, pp.3, 2010, https://doi.org/10.1111/j.1471-4159.2010.06978.x
  66. Food reward functions as affected by obesity and bariatric surgery vol.35, 2011, https://doi.org/10.1038/ijo.2011.147
  67. Caffeine prevents weight gain and cognitive impairment caused by a high-fat diet while elevating hippocampal BDNF vol.109, 2013, https://doi.org/10.1016/j.physbeh.2012.11.008
  68. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease–associated Aβ oligomers vol.122, pp.4, 2012, https://doi.org/10.1172/JCI57256
  69. The Emerging Link betweenO-GlcNAc and Alzheimer Disease vol.289, pp.50, 2014, https://doi.org/10.1074/jbc.R114.601351
  70. Role of acid sphingomyelinase in the regulation of mast cell function vol.44, pp.1, 2014, https://doi.org/10.1111/cea.12229
  71. O-GlcNAc and neurodegeneration: biochemical mechanisms and potential roles in Alzheimer's disease and beyond vol.43, pp.19, 2014, https://doi.org/10.1039/C4CS00038B
  72. mTORC2 (Rictor) in Alzheimer’s Disease and Reversal of Amyloid-β Expression-Induced Insulin Resistance and Toxicity in Rat Primary Cortical Neurons vol.56, pp.3, 2017, https://doi.org/10.3233/JAD-161029
  73. Ceramide formation as a target in beta-cell survival and function vol.15, pp.9, 2011, https://doi.org/10.1517/14728222.2011.588209
  74. La resistencia a la insulina como mecanismo de adaptación durante la evolución humana vol.57, pp.8, 2010, https://doi.org/10.1016/j.endonu.2010.05.003
  75. Intranasal insulin therapy for cognitive impairment and neurodegeneration: current state of the art vol.10, pp.12, 2013, https://doi.org/10.1517/17425247.2013.856877
  76. Overexpression of TFAM, NRF-1 and myr-AKT protects the MPP+-induced mitochondrial dysfunctions in neuronal cells vol.1820, pp.5, 2012, https://doi.org/10.1016/j.bbagen.2011.08.007
  77. The diabetic brain and cognition 2017, https://doi.org/10.1007/s00702-017-1763-2
  78. Amyloid-β Oligomers Induce Differential Gene Expression in Adult Human Brain Slices vol.287, pp.10, 2012, https://doi.org/10.1074/jbc.M111.298471
  79. The Angiotensin II Type 2 Receptor in Brain Functions: An Update vol.2012, 2012, https://doi.org/10.1155/2012/351758
  80. Synergistic effects of β-amyloid and ceramide-induced insulin resistance on mitochondrial metabolism in neuronal cells vol.1852, pp.9, 2015, https://doi.org/10.1016/j.bbadis.2015.05.012
  81. Endoplasmic Reticulum Stress Impairs Insulin Signaling through Mitochondrial Damage in SH-SY5Y Cells vol.20, pp.4, 2012, https://doi.org/10.1159/000333069
  82. PEGylation enhances the therapeutic potential for insulin-like growth factor I in central nervous system disorders vol.21, pp.5, 2011, https://doi.org/10.1016/j.ghir.2011.07.006
  83. Induction of apoptotic erythrocyte death by rotenone vol.300, pp.3, 2012, https://doi.org/10.1016/j.tox.2012.06.007
  84. A role for neuronal cAMP responsive-element binding (CREB)-1 in brain responses to calorie restriction vol.109, pp.2, 2012, https://doi.org/10.1073/pnas.1109237109
  85. Lycopene attenuates insulin signaling deficits, oxidative stress, neuroinflammation, and cognitive impairment in fructose-drinking insulin resistant rats vol.86, 2014, https://doi.org/10.1016/j.neuropharm.2014.07.020
  86. Inverse association between cancer and neurodegenerative disease: review of the epidemiologic and biological evidence vol.15, pp.6, 2014, https://doi.org/10.1007/s10522-014-9523-2
  87. Is Alzheimer’s disease amyloidosis the result of a repair mechanism gone astray? vol.8, pp.6, 2012, https://doi.org/10.1016/j.jalz.2011.05.2429
  88. The Triangle of Death in Alzheimer's Disease Brain: The Aberrant Cross-Talk Among Energy Metabolism, Mammalian Target of Rapamycin Signaling, and Protein Homeostasis Revealed by Redox Proteomics vol.26, pp.8, 2017, https://doi.org/10.1089/ars.2016.6759
  89. Redox signaling in neurodegeneration vol.84, 2015, https://doi.org/10.1016/j.nbd.2015.07.004
  90. The Beneficial Role of Vitamin D in Alzheimer’s Disease vol.26, pp.7, 2011, https://doi.org/10.1177/1533317511429321
  91. Metabolic Syndrome as a Risk Factor for Alzheimer's Disease: Is Aβ a Crucial Factor in Both Pathologies? vol.26, pp.10, 2017, https://doi.org/10.1089/ars.2016.6768
  92. The impairment of insulin signaling in Alzheimer's disease vol.64, pp.12, 2012, https://doi.org/10.1002/iub.1098
  93. Altered temporal lobe white matter lipid ion profiles in an experimental model of sporadic Alzheimer's disease vol.82, 2017, https://doi.org/10.1016/j.mcn.2017.04.010
  94. The Cycad Genotoxin MAM Modulates Brain Cellular Pathways Involved in Neurodegenerative Disease and Cancer in a DNA Damage-Linked Manner vol.6, pp.6, 2011, https://doi.org/10.1371/journal.pone.0020911
  95. Sweet Taste Receptor Signaling Network: Possible Implication for Cognitive Functioning vol.2015, 2015, https://doi.org/10.1155/2015/606479
  96. Enhanced Ca2+Entry, Ceramide Formation, and Apoptotic Death of Erythrocytes Triggered by Plumbagin vol.75, pp.11, 2012, https://doi.org/10.1021/np300611r
  97. Growth Factor Receptor-Bound Protein 10-Mediated Negative Regulation of the Insulin-Like Growth Factor-1 Receptor-Activated Signalling Pathway Results in Cognitive Disorder in Diabetic Rats vol.25, pp.7, 2013, https://doi.org/10.1111/jne.12040
  98. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: Implications for diagnostic and therapeutic strategies vol.108, 2013, https://doi.org/10.1016/j.pneurobio.2013.06.004
  99. Synthesis, biological activity and structure–activity relationships of new benzoic acid-based protein tyrosine phosphatase inhibitors endowed with insulinomimetic effects in mouse C2C12 skeletal muscle cells vol.71, 2014, https://doi.org/10.1016/j.ejmech.2013.11.001
  100. Elevated glucose and oligomeric β-amyloid disrupt synapses via a common pathway of aberrant protein S-nitrosylation vol.7, 2016, https://doi.org/10.1038/ncomms10242
  101. Spinal Cord Injury Causes Chronic Liver Pathology in Rats vol.32, pp.3, 2015, https://doi.org/10.1089/neu.2014.3497
  102. Enhanced Apoptotic Death of Erythrocytes Induced by the Mycotoxin Ochratoxin A vol.36, pp.1, 2012, https://doi.org/10.1159/000341488
  103. The role of endoplasmic reticulum stress in hippocampal insulin resistance vol.277, 2016, https://doi.org/10.1016/j.expneurol.2016.01.007
  104. High fat diet induces brain insulin resistance and cognitive impairment in mice vol.1863, pp.2, 2017, https://doi.org/10.1016/j.bbadis.2016.10.006
  105. Troxerutin protects against high cholesterol-induced cognitive deficits in mice vol.134, pp.3, 2011, https://doi.org/10.1093/brain/awq376
  106. Adiponectin is Protective against Oxidative Stress Induced Cytotoxicity in Amyloid-Beta Neurotoxicity vol.7, pp.12, 2012, https://doi.org/10.1371/journal.pone.0052354
  107. Dementia, stroke and migraine — Some common pathological mechanisms vol.299, pp.1-2, 2010, https://doi.org/10.1016/j.jns.2010.08.001
  108. Insulin Resistance Disrupts the Interaction Between AKT and the NMDA Receptor and the Inactivation of the CaMKIV/CREB Pathway in Minimal Hepatic Encephalopathy vol.159, pp.2, 2017, https://doi.org/10.1093/toxsci/kfx093
  109. Changes in cerebrospinal fluid and blood plasma levels of IGF-II and its binding proteins in Alzheimer’s disease: an observational study vol.14, pp.1, 2014, https://doi.org/10.1186/1471-2377-14-64
  110. Brain fuel metabolism, aging, and Alzheimer’s disease vol.27, pp.1, 2011, https://doi.org/10.1016/j.nut.2010.07.021
  111. Function of insulin in snail brain in associative learning vol.201, pp.10, 2015, https://doi.org/10.1007/s00359-015-1032-5
  112. Vascular and metabolic dysfunction in Alzheimer's disease: a review vol.236, pp.7, 2011, https://doi.org/10.1258/ebm.2011.010355
  113. Understanding zebrafish cognition vol.141, 2017, https://doi.org/10.1016/j.beproc.2016.11.020
  114. Anti-diabetic and anti-Alzheimer’s disease activities of Angelica decursiva vol.38, pp.12, 2015, https://doi.org/10.1007/s12272-015-0629-0
  115. Physical inactivity, insulin resistance, and the oxidative-inflammatory loop vol.48, pp.1, 2014, https://doi.org/10.3109/10715762.2013.847528
  116. Brain signaling systems in the Type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases vol.1, pp.3, 2015, https://doi.org/10.4155/fso.15.23
  117. T3D-959: A Multi-Faceted Disease Remedial Drug Candidate for the Treatment of Alzheimer’s Disease vol.51, pp.1, 2016, https://doi.org/10.3233/JAD-151013
  118. Brain and behavioral perturbations in rats following Western diet access vol.93, 2015, https://doi.org/10.1016/j.appet.2015.03.037
  119. Increased risk of cognitive impairment in patients with components of metabolic syndrome vol.95, pp.36, 2016, https://doi.org/10.1097/MD.0000000000004791
  120. Insulin deficiency results in reversible protein kinase A activation and tau phosphorylation vol.103, 2017, https://doi.org/10.1016/j.nbd.2017.04.005
  121. Neuroketotherapeutics: A modern review of a century-old therapy 2017, https://doi.org/10.1016/j.neuint.2017.05.019
  122. Brain energy metabolism parameters in an animal model of diabetes vol.25, pp.4, 2010, https://doi.org/10.1007/s11011-010-9220-z
  123. Alzheimer's disease: brain expression of a metabolic disorder? vol.21, pp.9, 2010, https://doi.org/10.1016/j.tem.2010.05.005
  124. Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome vol.47, pp.3, 2015, https://doi.org/10.1038/emm.2015.3
  125. Emerging role of p62/sequestosome-1 in the pathogenesis of Alzheimer's disease vol.96, pp.1, 2012, https://doi.org/10.1016/j.pneurobio.2011.11.005
  126. Neuroprotective and neurotrophic actions of glucagon-like peptide-1: an emerging opportunity to treat neurodegenerative and cerebrovascular disorders vol.166, pp.5, 2012, https://doi.org/10.1111/j.1476-5381.2012.01971.x
  127. Enduring consequences of maternal obesity for brain inflammation and behavior of offspring vol.24, pp.6, 2010, https://doi.org/10.1096/fj.09-144014
  128. Food reward, hyperphagia, and obesity vol.300, pp.6, 2011, https://doi.org/10.1152/ajpregu.00028.2011
  129. Benefits in Cognitive Function, Blood Pressure, and Insulin Resistance Through Cocoa Flavanol Consumption in Elderly Subjects With Mild Cognitive Impairment vol.60, pp.3, 2012, https://doi.org/10.1161/HYPERTENSIONAHA.112.193060
  130. Differential Binding of Human ApoE Isoforms to Insulin Receptor is Associated with Aberrant Insulin Signaling in AD Brain Samples vol.20, pp.1, 2018, https://doi.org/10.1007/s12017-018-8480-3
  131. p66Shc Signaling Mediates Diabetes-Related Cognitive Decline vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-21426-6
  132. Physical exercise promotes memory capability by enhancing hippocampal mitochondrial functions and inhibiting apoptosis in obesity-induced insulin resistance by high fat diet vol.33, pp.1, 2018, https://doi.org/10.1007/s11011-017-0160-8
  133. Moderating Effect of Insulin Resistance on the Relationship between Gray Matter Volumes and Cognitive Function vol.7, pp.11, 2018, https://doi.org/10.3390/jcm7110413
  134. Alzheimer's disease and Type 2 Diabetes mellitus are distinct diseases with potential overlapping metabolic dysfunction upstream of observed cognitive decline pp.10156305, 2019, https://doi.org/10.1111/bpa.12655
  135. The Use of Anti-Diabetic Drugs in Alzheimer’s Disease, New Therapeutic Options and Future Perspective vol.09, pp.06, 2018, https://doi.org/10.4236/pp.2018.96013
  136. Challenges for Alzheimer's Disease Therapy: Insights from Novel Mechanisms Beyond Memory Defects vol.12, pp.1662-453X, 2018, https://doi.org/10.3389/fnins.2018.00037
  137. Streptozotocin Impairs Proliferation and Differentiation of Adult Hippocampal Neural Stem Cells in Vitro-Correlation With Alterations in the Expression of Proteins Associated With the Insulin System vol.10, pp.1663-4365, 2018, https://doi.org/10.3389/fnagi.2018.00145
  138. Altered plasma visfatin levels and insulin resistance in patients with Alzheimer’s disease pp.2240-2993, 2019, https://doi.org/10.1007/s13760-019-01084-9