DOI QR코드

DOI QR Code

Induction of caspase-dependent apoptosis in melanoma cells by the synthetic compound (E)-1-(3,4-dihydroxyphenethyl)-3-styrylurea

  • Kim, Ji-Hae (Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University) ;
  • Jang, Young-Oh (Korean Minjok Leadership Academy) ;
  • Kim, Beom-Tae (Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University) ;
  • Hwang, Ki-Jun (Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University) ;
  • Lee, Jeong-Chae (Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University)
  • Published : 2009.12.31

Abstract

Recently, various phenolic acid phenethyl ureas (PAPUs) have been synthesized from phenolic acids by Curtius rearrangement for the development of more effective anti-oxidants. In this study, we examined the anti-tumor activity and cellular mechanism of the synthetic compound (E)-1-(3,4-dihydroxyphenethyl)-3-styrylurea (PAPU1) using melanoma B16/F10 and M-3 cells. Results showed that PAPU1 inhibited the cell proliferation and viability, but did not induce cytotoxic effects on primary cultured fibroblasts. PAPU1 induced apoptotic cell death rather than necrosis in melanoma cells, a result clearly proven by the shift of cells into sub-$G_1$ phase of the cell cycle and by the substantial increase in cells positively stained with TUNEL or Annexin V. Collectively, this study revealed that PAPU1 induced apoptosis in a caspase-dependent manner, suggesting a potential role as a cancer chemopreventive agent for melanoma cells.

Keywords

References

  1. Lee, J. C., Lim, K. T. and Jang, Y. S. (2002) Identification of Rhus verniciflua Stokes compounds that exhibit free radical scavenging and anti-apoptotic properties. Biochim. Biophys. Acta 1570, 181-191 https://doi.org/10.1016/S0304-4165(02)00196-4
  2. Meot-Duros, L. and Magne, C. (2009) Antioxidant activity and phenol content of Crithmum maritimum L. leaves. Plant Physiol. Biochem. 47, 37-41 https://doi.org/10.1016/j.plaphy.2008.09.006
  3. Rahman, I., Biswas, S. K. and Kirkham, P. A. (2006) Regulation of inflammation and redox signaling by dietary polyphenols. Biochem. Pharmacol. 72, 1439-1452 https://doi.org/10.1016/j.bcp.2006.07.004
  4. Korkina, L. G. (2007) Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cell. Mol. Biol. 53, 15-25
  5. Fang, S. C., Hsu, C. L. and Yen, G. C. (2008) Anti-inflammatory effects of phenolic compounds isolated from the fruits of Artocarpus heterophyllus. J. Agric. Food Chem. 56, 4463-4468 https://doi.org/10.1021/jf800444g
  6. Mathew, S. and Abraham, T. E. (2004) Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. Crit. Rev. Biotechnol. 24, 59-83 https://doi.org/10.1080/07388550490491467
  7. Shahidi, F., Alasalvar, C. and Liyana-Pathirana, C. M. (2007) Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts. J. Agric. Food Chem. 55, 1212-1220 https://doi.org/10.1021/jf062472o
  8. Masuda, T., Yamada, K., Akiyama, J., Someya, T., Odaka, Y., Takeda, Y., Tori, M., Nakashima, K., Maekawa, T. and Sone, Y. (2008) Antioxidation mechanism studies of caffeic acid: identification of antioxidation products of methyl caffeate from lipid oxidation. J. Agric. Food Chem. 56, 5947-5952 https://doi.org/10.1021/jf800781b
  9. Song, J. J., Cho, J. G., Hwang, S. J., Cho, C. G., Park, S. W. and Chae, S. W. (2008) Inhibitory effect of caffeic acid phenethyl ester (CAPE) on LPS-induced inflammation of human middle ear epithelial cells. Acta Otolaryngol. 128, 1303-1307 https://doi.org/10.1080/00016480801947082
  10. Hudson, E. A., Dinh, P. A., Kokubun, T., Simmonds, M. S. and Gescher, A. (2000) Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiol. Biomarkers Prev. 9, 1163-1170
  11. Kuntz, S. and Wenzel, U. and Daniel, H. (1999) Comparative analysis of the effects of flavonoids on proliferation, cytotoxicity, and apoptosis in human colon cancer cell lines. Eur. J. Nutr. 38, 133-142 https://doi.org/10.1007/s003940050054
  12. Rice-Evans, C. A., Miller, N. J., Bolwell, P. G., Bramley, P. M. and Pridham, J. B. (1995) The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res. 22, 375-383 https://doi.org/10.3109/10715769509145649
  13. Kato, A., Nasu, N., Takebayashi, K., Adachi, I., Minami, Y., Sanae, F., Asano, N., Watson, A. A. and Nash, R. J. (2008) Structure-activity relationships of flavonoids as potential inhibitors of glycogen phosphorylase. J. Agric. Food Chem. 56, 4469-4473 https://doi.org/10.1021/jf800569s
  14. Wolfe, K. L. and Liu, R. H. (2008) Structure-activity relationships of flavonoids in the cellular antioxidant activity assay. J. Agric. Food Chem. 56, 8404-8411 https://doi.org/10.1021/jf8013074
  15. van Acker, F. A., Schouten, O., Haenen, G. R., van der Vijgh, W. J. and Bast, A. (2000) Flavonoids can replace α-tocopherol as an antioxidant. FEBS Lett. 473, 145-148 https://doi.org/10.1016/S0014-5793(00)01517-9
  16. Krysko, D. V., Vanden Berghe, T., D'Herde, K. and Vandenabeele, P. (2008) Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods 44, 205-221 https://doi.org/10.1016/j.ymeth.2007.12.001
  17. Lee, Y. (2009) Activation of apoptotic protein in U937 cells by a component of turmeric oil. BMB reports 42, 96-100 https://doi.org/10.5483/BMBRep.2009.42.2.096
  18. Konishi, Y., Hitomi, Y. and Yoshioka, E. (2004) Intestinal absorption of p-coumaric and gallic acids in rats after oral administration. J. Agric. Food Chem. 52, 2527-2532 https://doi.org/10.1021/jf035366k
  19. Konishi, Y., Hitomi, Y., Yoshida, M. and Yoshioka, E. (2005) Absorption and bioavailability of artepillin C in rats after oral administration. J. Agric. Food Chem. 53, 9928-9933 https://doi.org/10.1021/jf051962y
  20. Jeon, Y. M., Kook, S. H., Son, Y. O., Kim, E. M., Park, S. S., Kim, J. G. and Lee, J. C. (2009) Role of MAPK in mechanical force-induced up-regulation of type I collagen and osteopontin in human gingival fibroblasts. Mol. Cell. Biochem. 320, 45-52 https://doi.org/10.1007/s11010-008-9897-z
  21. Kook, S. H., Hwang, J. M., Park, J. S., Kim, E. M., Heo, J. S., Kim, J. G. and Lee, J. C. (2009) Mechanical force induces type I collagen expression in human periodontal ligament fibroblasts through activation of ERK/JNK and AP-1. J. Cell. Biochem. 106, 1060-1067 https://doi.org/10.1002/jcb.22085
  22. Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55-63 https://doi.org/10.1016/0022-1759(83)90303-4
  23. Vermes, I., Haanen, C., Steffens-Nakken, H. and Reutelingsperger, C. (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods 184, 39-51 https://doi.org/10.1016/0022-1759(95)00072-I

Cited by

  1. CopA3 peptide from Copris tripartitus induces apoptosis in human leukemia cells via a caspase-independent pathway vol.45, pp.2, 2012, https://doi.org/10.5483/BMBRep.2012.45.2.85
  2. Bioactive Constituents of Zanthoxylum rhetsa Bark and Its Cytotoxic Potential against B16-F10 Melanoma Cancer and Normal Human Dermal Fibroblast (HDF) Cell Lines vol.21, pp.6, 2016, https://doi.org/10.3390/molecules21060652
  3. A phenolic acid phenethyl urea compound inhibits lipopolysaccharide-induced production of nitric oxide and pro-inflammatory cytokines in cell culture vol.10, pp.4, 2010, https://doi.org/10.1016/j.intimp.2010.01.016
  4. (E)-1-(3,4-dihydroxyphenethyl)-3-styrylurea inhibits proliferation of MCF-7 cells through G1 cell cycle arrest and mitochondria-mediated apoptosis vol.30, pp.4, 2010, https://doi.org/10.1007/s10059-010-0119-7
  5. Acteoside inhibits irradiation-mediated decreases in the viability and DNA synthesis of MC3T3-E1 cells vol.22, pp.3, 2013, https://doi.org/10.1007/s10068-013-0154-1