금강과 만경강에 서식하는 멸종위기 어류 감돌고기 Pseudopungtungia nigra의 AFLP에 의한 유전 다양성 및 집단구조

Genetic Diversity and Population Structure of the Endangered Fish Pseudopungtungia nigra (Cyprinidae) from the Geum and Mankyung Rivers Assessed by Amplified Fragment Length Polymorphism

  • 김근식 (순천향대학교 해양생명공학과) ;
  • 윤영은 (순천향대학교 해양생명공학과) ;
  • 강언종 (국립수산과학원 남부내수면연구소) ;
  • 양상근 (국립수산과학원 남부내수면연구소) ;
  • 방인철 (순천향대학교 해양생명공학과)
  • Kim, Keun-Sik (Department of Marine Biotechnology, Soonchunhyang University) ;
  • Yun, Young-Eun (Department of Marine Biotechnology, Soonchunhyang University) ;
  • Kang, Eon-Jong (Southern Regional Inland Fisheries Institute, National Fisheries Research and Development Institute) ;
  • Yang, Sang-Geun (Southern Regional Inland Fisheries Institute, National Fisheries Research and Development Institute) ;
  • Bang, In-Chul (Department of Marine Biotechnology, Soonchunhyang University)
  • 투고 : 2009.05.08
  • 심사 : 2009.06.26
  • 발행 : 2009.06.30

초록

금강과 만경강에 서식하는 멸종위기어류 감돌고기(Pseudopungtungia nigra)의 유전 다양성 및 집단 구조를 amplified fragment length polymorphism (AFLP)를 이용하여 분석하였다. AFLP분석은 5개의 primer 조합에서 447개의 유효밴드가 생성되었으며, 64.1%의 다양성을 보였다 (금강: 74.6%, 만경강: 53.6%). 집단 내 이형접합율은 금강 집단이 0.170, 만경강 집단이 0.104, 유전 다양성 수치는 금강 집단이 0.240, 만경강 집단이 0.147로 나타났다. 감돌고기 두 집단 간 분화도(Fst)는 0.150 수준에서 통계적으로 유의하여(P<0.05), 두 집단 사이에 유전적 분화를 나타내었다. 개체간의 UPGMA dendrogram을 분석한 결과 만경강 집단이 낮은 유전적 변이를 나타내었고, 지리적 지역에 대응하여 나뉘었으며, 두 집단 간 낮은 유전적 거리를 보였다(0.026). 따라서, 두 집단은 동일한 유전적 기원으로 추정되고, 감돌고기의 복원을 위한 친어 집단 선정을 위해서는 금강 집단이 적합하며, 만경강 집단은 유전적 및 서식지의 관리가 필요할 것으로 판단된다.

Genetic diversity and genetic structure within the Geum River and Mankyung River populations of the Korean endangered Black shinner (Pseudopungtungia nigra) were assessed by amplified fragment length polymorphism (AFLP). AFLP analysis using five primer combinations generated 447 AFLP bands with 64.1% polymorphism (Geum River 74.6% and Mankyung River 53.6%). The heterozygosities within the two populations were calculated to be 0.170 and 0.104, respectively. Their average genetic diversities are 0.240 and 0.147, respectively. The pairwise Fst value (0.150) indicated distinct genetic differentiation between the two populations. A UPGMA dendrogram based on genetic distance among the individuals revealed a division corresponding to geographical regions, with low genetic variation within the Mankyung River population, and low genetic distance (0.026) between the two populations. Consequently, the two populations may have the same genetic origin The Geum River population will be more suitable than the Mankyung River population for conservation plans to increase the population sizes. Genetic and habitat management will be necessary for the Mankyung River population.

키워드

참고문헌

  1. Barrett, S.C.H. and J.S. Kohn. 1991. Genetic and evolutionary consequences of small population size in plants: implications for conservation. In: Falk D.A., Holsinger K.E. Genetics and conservation of rare plants. Oxford University Press, NewYork, pp. 3-30.
  2. Blears, M.J., S.A. De Grandis, H. Lee and J.T. Trevors. 1998. Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. J. Ind. Microbiol. Biotechnol., 21: 99-114. https://doi.org/10.1038/sj.jim.2900537
  3. Chen, D., C. Zhang, C. Lu, Y. Chang and J. Chang. 2005. Amplified fragment length polymorphism analysis to identify the genetic structure of the Gymnocypris przewalskii (Kessler, 1876) population from the Qinghai Basin, China. J. Appl. Ichthyol., 21: 178-183. https://doi.org/10.1111/j.1439-0426.2005.00631.x
  4. Choi, H.S., K.N. Hong, J.M. Chung, B.Y. Kang and W.W. Kim. 2004. Genetic diversity and spatial genetic structure of Empetrum nigrum var. japonicum in Mt. Halla, South Korea. J. Kor. for. Soc., 93: 175-180. (in Korean)
  5. Drummond, R.S.M., D.J. Keeling, T.E. Richardson, R.C. Gardner and S.D. Wright. 2000. Genetic analysis and conservation of 31 surviving individuals of a rare New Zealand tree, Metrosideros bartlettii (Myrtaceae). Mol. Ecol., 9: 1149-1157. https://doi.org/10.1046/j.1365-294x.2000.00989.x
  6. Frankham, R., J.D. Ballou and D.A. Briscoe. 2002. Introduction to conservation genetics. Cambridge, Univ. Press, Cambridge.
  7. Hong, Y.P., M.H. Chang, H. Kang and S.S. Choi. 1999. The fish community of the Ungch'ˇ on Stream around new dam intended area. Kor. J. Environ. Biol., 17: 79-88. (in Korean)
  8. Jeon, S.R. 1977. Ecological Studies on the Pseudopungtungia nigra from Korea. Kor. J. Limnol., 10: 33-46. (in Korean)
  9. Kang, E.J. 1991. Phylogenetic study on the subfamily Gobioninae (Pisces: Cyprinidae) from Korea as evidenced by their comparative osteology and myology. Ph. D. Thesis, Chonbuk National University, p. 108. (in Korean)
  10. Kawamura, K., M. Kubota, M. Furukawa and Y. Harada. 2007. The genetic structure of endangered indigenous populations of the amago salmon, Oncorhynchus masou ishikawae, in Japan. Conserv. Genet., 8: 1163-1176. https://doi.org/10.1007/s10592-006-9271-1
  11. Kim, I.S., S.H. Choi, H.H. Lee and K.H. Han. 2004. Brood parasite of Korean shiner, Pseudopungtungia nigra in the Keum River, Korea. Kor. J. Ichthyol., 16: 75-79. (in Korean)
  12. Kim, I.S., Y. Choi and J.H. Shim. 1991. An occurrence of intergeneric hybrid cross, Pungtungia herzi X Pseudopungtungia nigra from the Ungcheon River, Korea. Kor. J. Ichthyol., 3: 42-47.
  13. Kim, I.S., Y. Choi, C.L. Lee, B.J. Kim and J. H. Kim. 2005. Illustrated book of Korean fishes. Kyo-hak Publishing, Korea, pp. 122. (in Korean)
  14. Kim, J.K., Y.P. Hong, K.G. An and S.S. Choi. 1991. Studies on early embryonic development of Pseudopuntungia nigra, Korean endemic species. Kor. J. Limnol., 24: 129-136.
  15. Leblois, R., A. Estoup and R. Streiff. 2006. Genetics of recent habitat contraction and reduction in population size: Does isolation by distance matter?. Mol. Ecol., 15: 3601-3615. https://doi.org/10.1111/j.1365-294X.2006.03046.x
  16. Lee, D.S. 1988. Geology of Korea. Geological Society of Korea, Kyohak-sa, Seoul, pp. 389-426.
  17. Lee, I.R., Y.A. Lee, H.C. Shin, Y.K. Nam, W.J. Kim and I.C. Bang. 2008a. Genetic diversity of an endangered fish, Iksookimia choii (Cypriniformes), from Korea as assessed by amplified fragment length polymorphism. Kor. J. Limnol., 41: 97-102. (in Korean)
  18. Lee, Y.A., Y.E. Yun, Y.K. Nam and I.C. Bang, 2008b. Genetic diversity of endangered fish Hemibarbus mylodon (Cyprinidae) assessed by AFLP. Kor. J. Aquaculture., 21: 196-200. (in Korean)
  19. Lee, S.H., K.H. Han, S.M. Yoon, D.S. Hwang, D.J. Yoo, C.L. Lee, I.S. Kim and Y.M. Son. 2004. Early life history and spawning behavior of Pseudopungtungia nigra. Kor. J. Ichthyol., 16: 309-316. (in Korean)
  20. Liu, Z.J. and J.F. Cordes. 2004. DNA marker technologies and their applications in aquaculture genetics. Aquaculture, 238: 1-37. https://doi.org/10.1016/j.aquaculture.2004.05.027
  21. Miller, M. 1997. Tools for population genetic analysis (TFPGA) 1.3: a windows program for the analysis of allozyme and molecular population genetic data. Computer software distributed by author. http://www.Marksgenetic software.net/tfpga.htm.
  22. Nei, M. 1972. Genetic distance between populations. American Naturalist, 106(949): 283-292. https://doi.org/10.1086/282771
  23. Palacios, C. and F. Gonzalez-Candelas. 1999. AFLP analysis of the critically endangered Limonium cavanillesii (Plumbaginaceae). J. Hered., 90: 485-489. https://doi.org/10.1093/jhered/90.4.485
  24. Roa, A.C., M.M. Maya, M.C. Duque, J. Tohme, A.C. Allem and M.W. Bonierbale. 1997. AFLP analysis of relationships among cassava and other Manihot species. Theor. Appl. Genet., 95: 741-746. https://doi.org/10.1007/s001220050620
  25. Rohlf, F.J. 1990. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System. Applied Biostatistics, Inc., Setauket, NewYork.
  26. Rusell, J.R., J.D. Fuller, M. Macaulay, B.G. Hatz, A. Jahoor, W. Powell and R. Waugh. 1997. Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs, and RAPDs. Theor. Appl. Genet., 95: 714-722. https://doi.org/10.1007/s001220050617
  27. Song, J., Z. Song, B. Yue, W. Zheng. 2006. Assessing genetic diversity of wild populations of Prenant’s schizothoracin, Schizothorax prenanti, using AFLP markers. Env. Biol. Fishes., 77: 79-86. https://doi.org/10.1007/s10641-006-9056-x
  28. Schneider, S., D. Roessli, and L. Excoffier. 2000. Arlequin ver. 2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Geneva, Switzerland.
  29. Travis, S.E., J. Maschinski and P. Keim. 1996. An analysis of genetic variation in Astragalus cremnophylax var. cremnophylax, a critically endangered plant, using AFLP markers. Mol. Ecol., 5: 735-745. https://doi.org/10.1111/j.1365-294X.1996.tb00370.x
  30. Vos, P., R. Rodgers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper and M. Zabeau, 1995. AFLP, a new technique for DNA fingerprinting. Nucleic Acids Res., 23: 4407-4414. https://doi.org/10.1093/nar/23.21.4407
  31. Wright, S. 1978. Evolution and the genetics of populations. A treatise in four volumes. Volume 4. Variability within and among natural populations. Chicago Univ. Press, Chicago.
  32. Xu, Z., J.H. Primavera, L.D. De la Pena, P. Pettit, J. Belak and A. Alcivar-Warren. 2001. Genetic diversity of wild and cultured Black Tiger Shrimp Penaeus monodon in the Philippines using microsatellites. Aquaculture, 199: 13-40. https://doi.org/10.1016/S0044-8486(00)00535-4