Acknowledgement
Supported by : Korea Science and Engineering Foundation, Ministry of Science and Technology, Ministry of the Environment
References
- Akira, S., Uematsu, S., and Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell 124, 783-801 https://doi.org/10.1016/j.cell.2006.02.015
- Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.L., Gomez-Gomez, L., Boller, T., Ausubel F.M., and Sheen, J. (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415, 977-983 https://doi.org/10.1038/415977a
- Bari, R., and Jones, J.D. (2009). Role of plant hormones in plant defense responses. Plant Mol. Biol. 69, 473-488 https://doi.org/10.1007/s11103-008-9435-0
- Chisholm, S.T., Coaker, G., Day, B., and Staskawicz, B.J. (2006). Host–microbe interactions: shaping the evolution of the plant immune response. Cell 24, 803-814
- Clarke, K.L., Larsen, P.B., Wang, X., and Chang, C. (1998). Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc. Natl. Acad. Sci. USA 95, 5401-5406 https://doi.org/10.1073/pnas.95.9.5401
- Dangl, J.L., and Jones, J.D.G. (2001). Plant pathogens and integrated defence responses to infection. Nature 411, 826-833 https://doi.org/10.1038/35081161
- Frye, C.A., and Innes, R.W. (1998). An Arabidopsis mutant with enhanced resistance to powdery mildew. Plant Cell 10, 947-956 https://doi.org/10.2307/3870681
- Frye, C.A., Tang, D., and Innes, R.W. (2001). Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc. Natl. Acad. Sci. USA 98, 373-378 https://doi.org/10.1073/pnas.011405198
- Hiei, Y., Hta, S., Komari, Y., and Kunashiro, T. (1994). Effective transformation of rice mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271-282 https://doi.org/10.1046/j.1365-313X.1994.6020271.x
- Huang, Y., Li, H., Hutchison, C.E., Laskey, J., and Kieber, J.J. (2003). Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J. 33, 221-233 https://doi.org/10.1046/j.1365-313X.2003.01620.x
- Ichimura, K. (MAPK Group). (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci. 7, 301-308 https://doi.org/10.1016/S1360-1385(02)02302-6
- Jung, Y.H., Agrawal, G.K., Rakwal, R., Kim, J.A., Lee, M.-O., Choi, P.G., Kim, Y.J., Kim, M.J., Shibato, J., Kim, S.-H., et al. (2006). Functional characterization of OsRacB GTPase-a potentially negative regulator of basal disease resistance in rice. Plant Physiol. Biochem. 44, 68-77 https://doi.org/10.1016/j.plaphy.2005.12.001
- Jwa, N.S., Agrawal, G.K., Tamogami, S., Yonekura, M., Han, O., Iwahashi, H., and Rakwal, R. (2006). Role of defense/stressrelated marker genes, proteins and secondary metabolites in defining rice self-defense mechanisms. Plant Physiol. Biochem. 44, 261-273 https://doi.org/10.1016/j.plaphy.2006.06.010
- Kim, J.A., Agrawal, G.K., Rakwal, R., Han, K.S., Kim, K.N., Yun, C.H., Heu, S., Park, S.Y., Lee, Y.H., Jwa, N.S., et al. (2003). Molecular cloning and mRNA expression analysis of a novel rice (Oryza sativa L.) MAPK kinase kinase, OsEDR1, an ortholog of Arabidopsis AtEDR1, reveal its role in defense/stress signaling pathways and development. Biochem. Biophys. Res. Commun. 300, 868-876 https://doi.org/10.1016/S0006-291X(02)02944-3
- Lee, M.O., Choi, P.G., Kim, J.A, Jung, Y.H., Jung, S.H., Kim, S.H., Kim, J.W., Lee, S.K., Jeon, J.S., Rakwal, R., et al. (2006). Two novel protein kinase genes, OsMSRPK1 and OsMSURPK2, are regulated by diverse environmental stresses in rice. J. Plant Biol. 49, 247-256 https://doi.org/10.1007/BF03030540
- Lam, E., Kato, N., and Lawton, M. (2001). Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411, 848-853 https://doi.org/10.1038/35081184
- Ligterink, W., and Hirt, H. (2001). Mitogen-activated protein (MAP) kinase pathways in plants: versatile signaling tools. Int. Rev. Cytol. 201, 209-275 https://doi.org/10.1016/S0074-7696(01)01004-X
- Lin, Z., Alexander, L., Hackett, R., and Grierson, D. (2008). LeCTR2, a CTR1-like protein kinase from tomato, plays a role in ethylene signalling, development and defence. Plant J. 54, 1083-1093 https://doi.org/10.1111/j.1365-313X.2008.03481.x
- Lorrain, S., Vailleau, F., Balague, C., and Roby, D. (2003). Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends Plant Sci. 8, 263-271 https://doi.org/10.1016/S1360-1385(03)00108-0
- Nakagami, H., Pitzschke, A., and Hirt, H. (2005). Emerging MAP kinase pathways in plant stress signaling. Trends Plant Sci. 10, 339-346 https://doi.org/10.1016/j.tplants.2005.05.009
- Pedley, K.F., and Martin, G.B. (2004). Identification of MAPKs and their possible MAPK kinase activators involved in the Ptomediated defense response of tomato. J. Biol. Chem. 279, 49229-49235 https://doi.org/10.1074/jbc.M410323200
- Pieterse, C.M.J., and Dicke, M. (2007). Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends Plant Sci. 12, 564-568 https://doi.org/10.1016/j.tplants.2007.09.004
- Rakwal, R., Kimura, S., Shibato, J., Nojima, K., Kim, Y.-K., Nahm, B.H., Jwa, N.-S., Endo, S., Tanaka, K., and Iwahashi, H. (2008). Growth retardation and death of rice plants irradiated with carbon ion beams is preceded by very early dose- and timedependent gene expression changes. Mol. Cells 25, 272-278
- Tamogami, S., Rakwal, R., and Kodama, O. (1997). Phytoalexin production by amino acid conjugates of jasmonic acid through induction of naringenin-7-O-methyltransferase, a key enzyme on phytoalexin biosynthesis in rice (Oryza sativa L.). FEBS Lett. 401, 239-242 https://doi.org/10.1016/S0014-5793(96)01482-2
- Tang, D., and Innes, R.W., (2002). Overexpression of a kinasedeficient form of the EDR1 gene enhances powdery mildew resistance and ethylene-induced senescence in Arabidopsis. Plant J. 32, 975-983 https://doi.org/10.1046/j.1365-313X.2002.01482.x
- Tang, D., Christiansen, K.M., and Innes, R.W. (2005). Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase. Plant Physiol. 138, 1018-1026 https://doi.org/10.1104/pp.105.060400
- Van Etten, H.D., Mansfield, J.W., Bailey, J.A., and Farmer, E.E. (1994). Two classes of plant antibiotics: phytoalexins versus''phytoanticipins'. Plant Cell. 6, 1191-1192 https://doi.org/10.2307/3869817
- Wasternack, C. (2007). An update on biosynthesis, signal transduction and action in plant stress responses, growth and development. Ann. Bot. 100, 681-697 https://doi.org/10.1093/aob/mcm079
- Yin, Z., Chen, J., Zeng, L., Goh, M., Leung, H., Khush, G.S., and Wang, G.L. (2000). Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol. Plant Microbe Interact. 13, 869-876 https://doi.org/10.1094/MPMI.2000.13.8.869
Cited by
- Comparative Phenotypic and Physiological Characteristics of Spotted Leaf 6 (spl6) and Brown Leaf Spot2 (bl2) Lesion Mimic Mutants (LMM) in Rice vol.30, pp.6, 2009, https://doi.org/10.1007/s10059-010-0151-7
- Biotechnology and Plant Disease Control-Role of RNA Interference vol.1, pp.2, 2009, https://doi.org/10.4236/ajps.2010.12008
- Rice Mitogen-Activated Protein Kinase Interactome Analysis Using the Yeast Two-Hybrid System vol.160, pp.1, 2009, https://doi.org/10.1104/pp.112.200071
- SPL5, a cell death and defense-related gene, encodes a putative splicing factor 3b subunit 3 (SF3b3) in rice vol.30, pp.2, 2009, https://doi.org/10.1007/s11032-011-9677-4
- Ectopic Expression of Hrf1 Enhances Bacterial Resistance via Regulation of Diterpene Phytoalexins, Silicon and Reactive Oxygen Species Burst in Rice vol.7, pp.9, 2009, https://doi.org/10.1371/journal.pone.0043914
- RNA interference: evolutions and applications in plant disease management vol.46, pp.12, 2009, https://doi.org/10.1080/03235408.2013.769315
- Proteomic analysis of a disease-resistance-enhanced lesion mimic mutant spotted leaf 5 in rice vol.6, pp.None, 2009, https://doi.org/10.1186/1939-8433-6-1
- Metabolomics of cereals under biotic stress: current knowledge and techniques vol.4, pp.None, 2013, https://doi.org/10.3389/fpls.2013.00082
- Oscyp71Z2 involves diterpenoid phytoalexin biosynthesis that contributes to bacterial blight resistance in rice vol.207, pp.None, 2009, https://doi.org/10.1016/j.plantsci.2013.02.005
- Modulation of Phytoalexin Biosynthesis in Engineered Plants for Disease Resistance vol.14, pp.7, 2009, https://doi.org/10.3390/ijms140714136
- The MAPKKK Gene Family in Gossypium raimondii : Genome-Wide Identification, Classification and Expression Analysis vol.14, pp.9, 2013, https://doi.org/10.3390/ijms140918740
- Molecular identification and interaction assay of the gene (OsUbc13) encoding a ubiquitin-conjugating enzyme in rice vol.15, pp.7, 2009, https://doi.org/10.1631/jzus.b1300273
- Transcriptome profiling of the spl5 mutant reveals that SPL5 has a negative role in the biosynthesis of serotonin for rice disease resistance vol.8, pp.None, 2009, https://doi.org/10.1186/s12284-015-0052-7
- Secondary metabolites in fungus-plant interactions vol.6, pp.None, 2009, https://doi.org/10.3389/fpls.2015.00573
- Mutation of SPOTTED LEAF3 (SPL3) impairs abscisic acid-responsive signalling and delays leaf senescence in rice vol.66, pp.22, 2009, https://doi.org/10.1093/jxb/erv401
- Updated Rice Kinase Database RKD 2.0: enabling transcriptome and functional analysis of rice kinase genes vol.9, pp.None, 2009, https://doi.org/10.1186/s12284-016-0106-5
- Rice WRKY11 Plays a Role in Pathogen Defense and Drought Tolerance vol.11, pp.None, 2009, https://doi.org/10.1186/s12284-018-0199-0
- The Rice SPOTTED LEAF4 ( SPL4 ) Encodes a Plant Spastin That Inhibits ROS Accumulation in Leaf Development and Functions in Leaf Senescence vol.9, pp.None, 2009, https://doi.org/10.3389/fpls.2018.01925
- Transcriptomic Analysis of Oryza sativa Leaves Reveals Key Changes in Response to Magnaporthe oryzae MSP1 vol.34, pp.4, 2009, https://doi.org/10.5423/ppj.oa.01.2018.0008
- Identification on mitogen-activated protein kinase signaling cascades by integrating protein interaction with transcriptional profiling analysis in cotton vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-26400-w
- Functional inactivation of OsGCNT induces enhanced disease resistance to Xanthomonas oryzae pv. oryzae in rice vol.18, pp.None, 2009, https://doi.org/10.1186/s12870-018-1489-9
- Identification of a Novel Semi-Dominant Spotted-Leaf Mutant with Enhanced Resistance to Xanthomonas oryzae pv. oryzae in Rice vol.19, pp.12, 2009, https://doi.org/10.3390/ijms19123766
- OsMAPKKK63 is involved in salt stress response and seed dormancy control vol.14, pp.3, 2009, https://doi.org/10.1080/15592324.2019.1578633
- Update on the Roles of Rice MAPK Cascades vol.22, pp.4, 2009, https://doi.org/10.3390/ijms22041679
- Heredity and gene mapping of a novel white stripe leaf mutant in wheat vol.20, pp.7, 2009, https://doi.org/10.1016/s2095-3119(20)63345-7
- SPL36 Encodes a Receptor-like Protein Kinase that Regulates Programmed Cell Death and Defense Responses in Rice vol.14, pp.1, 2009, https://doi.org/10.1186/s12284-021-00475-y