Morphological Variations and Genetic Variations Inferred from AFLP (Amplified Fragment Length Polymorphism) Analysis of Cottus Populations (Scorpaeniformes: Cottidae) in Korea

한국산 둑중개속 어류 개체군들의 형태 변이 및 AFLP 분석을 통한 유전 변이

  • Byeon, Hwa Kun (Environmental Research Institute, Kangwon National University) ;
  • Kim, Keun-Sik (Department of Marine Biotechnology, Soonchunhyang University) ;
  • Song, Ha-Yoon (Department of Marine Biotechnology, Soonchunhyang University) ;
  • Bang, In-Chul (Department of Marine Biotechnology, Soonchunhyang University)
  • 변화근 (강원대학교 환경연구소) ;
  • 김근식 (순천향대학교 해양생명공학과) ;
  • 송하윤 (순천향대학교 해양생명공학과) ;
  • 방인철 (순천향대학교 해양생명공학과)
  • Received : 2009.05.08
  • Accepted : 2009.06.25
  • Published : 2009.06.30

Abstract

Morphological and genetic variation of Cottus populations in Korea were compared to each other in the watershed. Morphological variation was analyzed by meristic and morphometric characters, and by fertilized egg sizes. Genetic variation was assessed by amplified fragment length polymorphism (AFLP) fingerprinting. Cottus koreanus populations of rivers and streams running towards the eastern coasts of the Korean Peninsula were significantly different in morphometric characters from populations in rivers and streams running towards the western and southern coasts of the Korean Peninsula, but did not differ in meristric characters and fertilized egg sizes. Cottus populations in the upper streams-Yangyangnamadae Stream, Jusu Stream and Samcheogosip Stream-were the same in meristic and genetic characters. However, the Cottus sp. population from Baebong Stream is related to C. hangiongensis in meristic characteristics and to C. koreanus in the morphometric characteristics of length of the ventral fin ray and in the fertilized egg size. Pairwise genetic distances assessed by the AFLP method among C. koreanus populations were in the range of 0.110 to 0.221. Genetic distances between C. hangiongensis and C. koreanus populations varied from 0.542 to 0.621, and those between the Cottus sp. population of Baebong Stream and C. koreanus populations from 0.222 to 0.304. The result of the UPGMA dendrogram shows the Cottus sp. population of Baebong Stream was clearly separated of other C. koreanus populations.

한국의 Cottus 속 어류 9개체군들의 형태 및 유전 변이를 서로 비교하였다. 형태변이 분석은 계수, 계측 형질 및 수정난의 크기를 분석하였으며, 유전 변이 분석은 AFLP fingerprinting을 이용하였다. 조사결과 동해로 흐르는 하천의 둑중개 집단은 서해와 남해로 흐르는 강 또는 하천의 둑중개 집단과 계측형질에서 유의적인 차이를 보였으나, 계수형질과 수정난 크기의 차이는 없었다. 하지만 배봉천의 Cottus sp. 집단은 계수형질에 있어 한둑중개와 비슷하였고, 배지느러미의 계측형질과 수정난의 크기는 둑중개와 비슷하였다. AFLP를 이용한 유전적 거리를 추정한 결과 둑중개 집단간 0.110~0.221로 나타났다. 한둑중개 집단과 둑중개 집단간 0.542~0.621로 나타났고, 배봉천의 Cottus sp. 집단과 둑중개 집단 간 0.222~0.304로 나타났다. UPGMA dendrogram결과 Cottus sp. 집단은 다른 둑중개 집단과 분리되었다.

Keywords

References

  1. 변화근. 1995a. 한국산 둑중개의 생태학적 연구. 강원대학교 대학원 박사학위논문, pp. 92-95.
  2. 변화근. 1995b. 한국산 둑중개속(Cottus)의 분류학적 재검토와 자어의 형태적 특징. 한국어류학회지, 7: 128-134.
  3. 변화근. 1996. 한국산 둑중개(Cottus poecilopus)의 성적 이형. 한국어류학회지, 8: 14-21.
  4. 전상린. 1986. 한국산 둑중개과 및 큰가시고기과 주연성 단수어 의 검색과 분포. 상명여자대학 논문집, 14: 83-115.
  5. 전상린. 1998. 한국산 둑중개와 한둑중개의 검색과 분포. 상명대학교 기초과학연구소, 11: 1-14.
  6. Bonin, A., D. Ehrich and S. Manel. 2007. Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol. Ecol., 16: 3737-3758. https://doi.org/10.1111/j.1365-294X.2007.03435.x
  7. Goto, A. 1975. Ecological and morphological divergence of the freshwater sculpin, Cottus nozawae Snyder-I. Spawning behavior and process of the devlopment in the post-hatching stage. Bull. Fac. Fish Hokkaido Univ., 26: 31-37.
  8. Goto, A. 1977. Ecological and morphological studies on the freshwater sculpins in Hokkaido. Dissertation, Hokkaido Univ., 207pp.
  9. Goto, A. 1978. Comparative studies on the maturation process of two types of Cottus nozawae-I. The annual cycle of ovarian development. Japan. J. Ichthyol., 25: 115-123.
  10. Goto, A. 1981. Life history and distribution of a River sculpin, Cottus hangiongensis. Bull. Fac. Fish Hokkaido Univ., 32: 10-21.
  11. Goto, A. 1984. Life history and distribution of a River sculpin, Cottus hangensis. J. Japan. Ichthyol., 31: 161-166.
  12. Kim, I.S. and C.H. Youn. 1992. Synopsis of the Family Cottidae (Pisces: Scorpaeniformes) from Korea. Kor. J. Ichthyol., 4:54-79.
  13. Knorr, C., H.H. Cheng and J.B. Dodgson. 1999. Application of AFLP markers to genome mapping in poultry. Anim. Genet., 30:28-35. https://doi.org/10.1046/j.1365-2052.1999.00411.x
  14. Lee, I.R., Y.A. Lee, H.C. Shin, Y.K. Nam, W.J. Kim and I.C. Bang. 2008a. Genetic diversity of an endangered fish, Iksookimia choii (Cypriniformes), from Korea as assessed by amplified ragment length polymorphism. Kor. J. Limnol., 41: 97-102 (in Korean)
  15. Lee, W.O., I.R. Lee, H.Y. Song and I.C. Bang. 2008b. Genetic differentiation of the largemouth bass Micropterus salmoides from the major rivers and reserboirs in Korea assessed by AFLP. Kor. J. Limnol., 41: 395-401. (in Korean)
  16. Lee, Y.A., Y.E. Yun, Y.K. Nam and I.C. Bang. 2008c. Genetic diversity of endangered fish Hemibarbus mylodon (Cyprinidae) assessed by AFLP. Kor. J. Aquaculture, 21: 196-200. (in Korean)
  17. Liu, Z.J., P. Li, B.J. Aegue and R.A. Dunham. 1998. Ingeritance and usefulness of AFLP markers in channel catfish (Ictalurus punctaus), blue catfish (I. furcatus), and their F1, F2, and backcross hybrids. Mol. Gen. Gent., 258: 260-268. https://doi.org/10.1007/s004380050730
  18. Ma, G.C., H.S. Tsao, H.P. Lu and H.T. Yu. 2006. AFLPs congruent with morphological differentiation of Asian common minnow Zacco (Pisces: Cyprinidae) in Taiwan. Zoologica., 35:341-351. https://doi.org/10.1111/j.1463-6409.2006.00232.x
  19. Mariette, S., D. Chagne, C. Lezier, P. Pastuszka, A. Raffin, C. Plomion and A. Lremer. 2001. Genetic distance within and among Pinus pinaster populations: comparison between AFLP and microsatellite marker. Heredity, 86: 469-479. https://doi.org/10.1046/j.1365-2540.2001.00852.x
  20. Miller, M. 1997. Tools for population genetic analysis (TFPGA) 1.3: a windows program for the analysis of allozyme and molecular population genetic data. Computer software distributed by author. http://www.Marksgenetic software.net/tfpga.htm.
  21. Mori, T. and K. Uchida. 1934. A revised catalogue of the fishes in Chosen. J. Chosen Nat. Hist. Soc., 19: 24.
  22. Nei, M. 1975. Molecular population genetics and the theory of evolution (Translated by Wang Jiayu). China Agriculture Press, Beijing, China, pp. 121-123.
  23. Rohlf, S.B. 1992. NTSYS-pc numerical taxonomy and multivariate analysis system, version 1.7. Applied Biostatistics Inc., New York, USA.
  24. Rusell, J.R., J.D. Fuller, M. Macaulay, B.G. Hatz, A. Jahoor, W. Powell and R. Waugh. 1997. Direct comparison of lecels of genetic variation among barley accessions detdcted by RFLPs, AFLPs, SSRs, and RAPDs. Theor. Appl. Genet., 95: 714-722. https://doi.org/10.1007/s001220050617
  25. Ryouji, F., Y. Choi and Y. Mamoru. 2005. A new species of freshwater sculpin, Cottus koreanus (Pisces: Cottidae) from Korea. Species Distance, 10: 7-17.
  26. Seki, S. 1999. AFLP analysis of genetic distance in three populations of Ayu plecoglossus altivelis. Fisheries Science, 6: 888-892.
  27. Shaklee, J.B. and P. Pauly. 1982. Speciation and evolution of marine fishes studied by electrophoresis analysis of proteins. Pac. Sci., 36: 141-157.
  28. Sung, Y.G., Y.K. Nam, H.S. Han and I.C. Bang, 2007. Genetic diversity and variation of Chinese shrimp Fenneropenaeus chinensis populations as inferred by AFLP fingerprinting. J. Aquaculture, 20: 255-259. (in Korean)
  29. Vos, P., R. Hodgers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper and M. Zabeau. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res., 23: 4407-4414 https://doi.org/10.1093/nar/23.21.4407
  30. Watanabe, M. 1960. Fauna Japonica, Cottidae (Pisces), pp. 11-218.