DOI QR코드

DOI QR Code

Identification of epistasis in ischemic stroke using multifactor dimensionality reduction and entropy decomposition

  • Park, Jung-Dae (Department of Bioinformatics and Life Science, Soongsil University) ;
  • Kim, Youn-Young (Department of Bioinformatics and Life Science, Soongsil University) ;
  • Lee, Chae-Young (Department of Bioinformatics and Life Science, Soongsil University)
  • Published : 2009.09.30

Abstract

We investigated the genetic associations of ischemic stroke by identifying epistasis of its heterogeneous subtypes such as small vessel occlusion (SVO) and large artery atherosclerosis (LAA). Epistasis was analyzed with 24 genes in 207 controls and 271 patients (SVO = 110, LAA = 95) using multifactor dimensionality reduction and entropy decomposition. The multifactor dimensionality reduction analysis with any of 1- to 4-locus models showed no significant association with LAA (P > 0.05). The analysis of SVO, however, revealed a significant association in the best 3-locus model with P10L of TGF-$\beta{1}$, C1013T of SPP1, and R485K of F5 (testing balanced accuracy = 63.17%, P < 0.05). Subsequent entropy analysis also revealed that such heterogeneity was present and quite a large entropy was estimated among the 3 loci for SVO (5.43%), but only a relatively small entropy was estimated for LAA (1.81%). This suggests that the synergistic epistasis model might contribute specifically to the pathogenetsis of SVO, which implies a different etiopathogenesis of the ischemic stroke subtypes.

Keywords

References

  1. Hassan, A. and Markus, H. S. (2000) Genetics and ischaemic stroke. Brain 123, 1784-1812 https://doi.org/10.1093/brain/123.9.1784
  2. Lee, C. and Kong, M. (2007) An interactive association of common sequence variants in the neuropeptide Y gene with susceptibility to ischemic stroke. Stroke 38, 2663-2669 https://doi.org/10.1161/STROKEAHA.107.482075
  3. Cipollone, F., Fazia, M., Mincione, G., Iezzi, A., Pini, B., Cuccurullo, C., Ucchino, S., Spigonardo, F., Di Nisio, M., Cuccurullo, F., Mezzetti, A. and Porreca, E. (2004) Increased expression of transforming growth factor-$\beta$1 as a stabilizing factor in human atherosclerotic plaques. Stroke 35, 2253-2257 https://doi.org/10.1161/01.STR.0000140739.45472.9c
  4. Kim, Y. and Lee, C. (2006) The gene encoding transforming growth factor (1 confers risk of ischemic stroke and vascular dementia. Stroke 37, 2843-2845 https://doi.org/10.1161/01.STR.0000244782.76917.87
  5. Sie, M. P., Uitterlinden, A. G., Bos, M. J., Arp, P. P., Breteler, M. M., Koudstaal, P. J., Pols, H. A.,Hofman, A., van Duijn, C. M. and Witteman, J. C. (2006) TGF-$\beta$1 polymorphisms and risk of myocardial infarction and stroke: the Rotterdam study. Stroke 37, 2667-2671 https://doi.org/10.1161/01.STR.0000244779.30070.1a
  6. Kim, Y., Kim, J. H., Nam, Y. J., Kong, M., Kim, Y. J., Yu, K. H., Lee, B. C. and Lee, C. (2006) Klotho is a genetic risk factor for ischemic stroke caused by cardioembolism in Korean females. Neurosci. Lett. 407, 189-194 https://doi.org/10.1016/j.neulet.2006.08.039
  7. Li, Y. H., Chen, J. H., Wu, H. L., Shi, G. Y., Huang, H. C., Chao, T. H., Tsai, W. C., Tsai, L. M., Guo, H. R., Wu, W. S. and Chen, Z. C. (2000) G-33A mutation in the promoter region of thrombomodulin gene and its association with coronary artery disease and plasma soluble thrombomodulin levels. Am. J. Cardiol. 85, 8-12
  8. Brenner, D., Labreuche, J., Touboul, P. J., Schmidt-Petersen, K., Poirier, O., Perret, C., Schonfelder, J., Combadiere, C., Lathrop, M., Cambien, F., Brand-Herrmann, S. M. and Amarenco, P. (2006) Cytokine polymorphisms associated with carotid intima-media thickness in stroke patients. Stroke 37, 1691-1696 https://doi.org/10.1161/01.STR.0000226565.76113.6c
  9. Kim, Y. and Lee, C. (2008) Haplotype analysis revealed a genetic influence of osteopontin on large artery atherosclerosis. J. Biomed. Sci. 15, 529-533 https://doi.org/10.1007/s11373-008-9240-4
  10. Rho, S., You, S., Kim, Y. and Hwang, D. (2008) From proteomics toward systems biology: integration of different types of proteomics data into network models. BMB Rep. 41, 184-193
  11. Adams, H. P. Jr, Bendixen, B. H., Kappelle, L. J., Biller, J., Love, B. B., Gordon, D. L. and Marsh, E. E. 3rd. (1993) Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 24, 35-41 https://doi.org/10.1161/01.STR.24.1.35
  12. Moore, J. H., Gilbert, J. C., Tsai, C. T., Chiang, F. T., Holden, T., Barney, N. and White, B. C. (2006) A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J. Theor. Biol. 241, 252-261 https://doi.org/10.1016/j.jtbi.2005.11.036
  13. Lou, X. Y., Chen, G. B., Yan, L., Ma, J. Z., Zhu, J., Elston, R. C. and Li, M. D. (2007) A generalized combinatorial approach for detecting gene by gene and gene by environment interactions with application to nicotine dependence. Am. J. Hum. Genet. 80, 1125-1137 https://doi.org/10.1086/518312
  14. Jakulin, A. and Bratko, I. (2003) Analyzing attribute interactions. Lect. Notes Artiff. Intell. 2838, 229-240 https://doi.org/10.1007/978-3-540-39804-2_22
  15. McGill, W. J. (1954) Multivariate information transmission. Psychometrica 19, 97-116 https://doi.org/10.1007/BF02289159

Cited by

  1. Association of polymophisms of renin-angiotensin and hemostasis system genes with ischemic stroke in Russians from central Russia vol.46, pp.2, 2012, https://doi.org/10.1134/S0026893312010232
  2. Genetic architecture for susceptibility to gout in the KARE cohort study vol.57, pp.6, 2012, https://doi.org/10.1038/jhg.2012.39