Acknowledgement
Supported by : Korea Science and Engineering Foundation, Ewha Woman's University
References
- Andris-Widhopf, J., Steinberger, P., Fuller, R., Rader, C., and Barbas, C.F., III (2001). generation of antibody libraries: PCR amplification and assembly of light- and heavy-chain coding sequences. In Phage Display: A Laboratory Manual, C.F. Barbas, III, D.R. Burton, J.K. Scott, and G.J. Silverman, eds. (Cold Spring Harbor, USA: Cold Spring Harbor Laboratory Press), pp. 9.1-9.111
- de Haard, H.J., van Neer, N., Reurs, A., Hufton, S.E., Roovers, R.C., Henderikx, P., de Bruine, A.P., Arends, J.W., and Hoogenboom, H.R. (1999). A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J. Biol. Chem. 274, 18218-18230 https://doi.org/10.1074/jbc.274.26.18218
- de Wildt, R.M., Mundy, C.R., Gorick, B.D., and Tomlinson, I.M. (2000). Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat. Biotechnol. 18, 989-994 https://doi.org/10.1038/79494
- Faix, P.H., Burg, M.A., Gonzales, M., Ravey, E.P., Baird, A., and Larocca, D. (2004). Phage display of cDNA libraries: enrichment of cDNA expression using open reading frame selection. Biotechniques 36, 1018-1029
- Gerth, M.L., Patrick, W.M., and Lutz, S. (2004). A second-generation system for unbiased reading frame selection. Protein Eng. Des. Sel. 17, 595-602 https://doi.org/10.1093/protein/gzh068
- Hoet, R.M., Cohen, E.H., Kent, R.B., Rookey, K., Schoonbroodt, S., Hogan, S., Rem, L., Frans, N., Daukandt, M., Pieters, H., et al. (2005). Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determiningregion diversity. Nat. Biotechnol. 23, 344-348 https://doi.org/10.1038/nbt1067
- Hoogenboom, H.R., and Chames, P. (2000). Natural and designer binding sites made by phage display technology. Immunol. Today 21, 371-378 https://doi.org/10.1016/S0167-5699(00)01667-4
- Jirholt, P., Ohlin, M., Borrebaeck, C.A., and Soderlind, E. (1998). Exploiting sequence space: shuffling in vivo formed complementarity determining regions into a master framework. Gene 215, 471-476 https://doi.org/10.1016/S0378-1119(98)00317-5
- Jones, P.T., Dear, P.H., Foote, J., Neuberger, M.S., and Winter, G. (1986). Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321, 522-525 https://doi.org/10.1038/321522a0
- Kim, S.J., Park, Y., and Hong, H.J. (2005). Antibody engineering for the development of therapeutic antibodies. Mol. Cells 20, 17-29
- Knappik, A., Ge, L., Honegger, A., Pack, P., Fischer, M., Wellnhofer, G., Hoess, A., Wolle, J., Pluckthun, A., and Virnekas, B. (2000). Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J. Mol. Biol. 296, 57-86 https://doi.org/10.1006/jmbi.1999.3444
- Lee, C.V., Liang, W.C., Dennis, M.S., Eigenbrot, C., Sidhu, S.S., and Fuh, G. (2004). High-affinity human antibodies from phagedisplayed synthetic Fab libraries with a single framework scaffold. J. Mol. Biol. 340, 1073-1093 https://doi.org/10.1016/j.jmb.2004.05.051
- Loset, G.A., Lobersli, I., Kavlie, A., Stacy, J.E., Borgen, T., Kausmally, L., Hvattum, E., Simonsen, B., Hovda, M. B., and Brekke, O.H. (2005). Construction, evaluation and refinement of a large human antibody phage library based on the IgD and IgM variable gene repertoire. J. Immunol. Methods 299, 47-62 https://doi.org/10.1016/j.jim.2005.01.014
- Lutz, S., Fast, W., and Benkovic, S.J. (2002). A universal, vectorbased system for nucleic acid reading-frame selection. Protein Eng. 15, 1025-1030 https://doi.org/10.1093/protein/15.12.1025
- Pini, A., Viti, F., Santucci, A., Carnemolla, B., Zardi, L., Neri, P., and Neri, D. (1998). Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J. Biol. Chem. 273, 21769-21776 https://doi.org/10.1074/jbc.273.34.21769
- Rader, C., and Barbas, C.F., 3rd (1997). Phage display of combinatorial antibody libraries. Curr. Opin. Biotechnol. 8, 503-508 https://doi.org/10.1016/S0958-1669(97)80075-4
- Riechmann, L., Clark, M., Waldmann, H., and Winter, G. (1988). Reshaping human antibodies for therapy. Nature 332, 323-327 https://doi.org/10.1038/332323a0
- Rothe, C., Urlinger, S., Lohning, C., Prassler, J., Stark, Y., Jager, U., Hubner, B., Bardroff, M., Pradel, I., Boss, M.I=et alK (2008). The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J. Mol. Biol. 376, 1182-1200 https://doi.org/10.1016/j.jmb.2007.12.018
- Scott, J.K., and Barbas, C.F., III (2001). Phage Display Vectors. In phage display: A Laboratory Manual, C.F. Barbas, III, D.R. Burton, J.K. Scott, and G.J. Silverman, eds. (Cold Spring Harbor, USA: Cold Spring Harbor Laboratory Press), pp. 2.1-2.19
- Seehaus, T., Breitling, F., Dubel, S., Klewinghaus, I., and Little, M. (1992). A vector for the removal of deletion mutants from antibody libraries. Gene 114, 235-237 https://doi.org/10.1016/0378-1119(92)90580-I
- Sidhu, S.S. (2001). Engineering M13 for phage display. Biomol. Eng. 18, 57-63 https://doi.org/10.1016/S1389-0344(01)00087-9
- Sidhu, S.S., and Fellouse, F.A. (2006). Synthetic therapeutic antibodies. Nat. Chem. Biol. 2, 682-688 https://doi.org/10.1038/nchembio843
- Silacci, M., Brack, S., Schirru, G., Marlind, J., Ettorre, A., Merlo, A., Viti, F., and Neri, D. (2005). Design, construction, and characterization of a large synthetic human antibody phage display library. Proteomics 5, 2340-2350 https://doi.org/10.1002/pmic.200401273
- Soderlind, E., Strandberg, L., Jirholt, P., Kobayashi, N., Alexeiva, V., Aberg, A.M., Nilsson, A., Jansson, B., Ohlin, M., Wingren, C., et al. (2000). Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries. Nat. Biotechnol. 18, 852-856 https://doi.org/10.1038/78458
- Vaughan, T.J., Williams, A.J., Pritchard, K., Osbourn, J.K., Pope, A.R., Earnshaw, J.C., McCafferty, J., Hodits, R.A., Wilton, J., and Johnson, K.S. (1996). Human antibodies with subnanomolar affinities isolated from a large non-immunized phage display library. Nat. Biotechnol. 14, 309-314 https://doi.org/10.1038/nbt0396-309
- Verhoeyen, M., Milstein, C., and Winter, G. (1988). Reshaping human antibodies: grafting an antilysozyme activity. Science 239, 1534-1536 https://doi.org/10.1126/science.2451287
- Winter, G., Griffiths, A.D., Hawkins, R.E., and Hoogenboom, H.R. (1994). Making antibodies by phage display technology. Annu. Rev. Immunol. 12, 433-455 https://doi.org/10.1146/annurev.iy.12.040194.002245
- Zacchi, P., Sblattero, D., Florian, F., Marzari, R., and Bradbury, A.R. (2003). Selecting open reading frames from DNA. Genome Res. 13, 980-990 https://doi.org/10.1101/gr.861503
- Zemlin, M., Klinger, M., Link, J., Zemlin, C., Bauer, K., Engler, J.A., Schroeder, H.W., Jr., and Kirkham, P.M. (2003). Expressed murine and human CDR-H3 intervals of equal length exhibit distinct repertoires that differ in their amino acid composition and predicted range of structures. J. Mol. Biol. 334, 733-749 https://doi.org/10.1016/j.jmb.2003.10.007
Cited by
- Systematic antibody and antigen-based proteomic profiling with microarrays vol.11, pp.2, 2009, https://doi.org/10.1586/erm.10.110
- Family-selective detection of antibiotics using antibody-functionalized carbon nanotube sensors vol.166, pp.None, 2012, https://doi.org/10.1016/j.snb.2012.02.039
- Development of a Single Chain Antibody Using a Phage Display Cloning Method for the Detection of 2,4-Dinitrotoluene vol.34, pp.2, 2013, https://doi.org/10.5012/bkcs.2013.34.2.460
- Construction of a Large Synthetic Human Fab Antibody Library on Yeast Cell Surface by Optimized Yeast Mating vol.24, pp.3, 2009, https://doi.org/10.4014/jmb.1401.01002
- Rapid Isolation of Antibody from a Synthetic Human Antibody Library by Repeated Fluorescence-Activated Cell Sorting (FACS) vol.9, pp.10, 2014, https://doi.org/10.1371/journal.pone.0108225
- Synthetic approach to the generation of antibody diversity vol.48, pp.9, 2015, https://doi.org/10.5483/bmbrep.2015.48.9.120
- A Novel Human scFv Library with Non-Combinatorial Synthetic CDR Diversity vol.10, pp.10, 2015, https://doi.org/10.1371/journal.pone.0141045
- Simultaneous blockade of VEGF and Dll4 by HD105, a bispecific antibody, inhibits tumor progression and angiogenesis vol.8, pp.5, 2009, https://doi.org/10.1080/19420862.2016.1171432
- Amelioration of sepsis by TIE2 activation–induced vascular protection vol.8, pp.335, 2009, https://doi.org/10.1126/scitranslmed.aad9260
- Novel strategy for a bispecific antibody: induction of dual target internalization and degradation vol.35, pp.34, 2009, https://doi.org/10.1038/onc.2015.514
- Secreted tryptophanyl-tRNA synthetase as a primary defence system against infection vol.2, pp.None, 2009, https://doi.org/10.1038/nmicrobiol.2016.191
- Tumor Inhibitory Effect of IRCR201, a Novel Cross-Reactive c-Met Antibody Targeting the PSI Domain vol.18, pp.9, 2009, https://doi.org/10.3390/ijms18091968
- Production of recombinant human procollagen type I C-terminal propeptide and establishment of a sandwich ELISA for quantification vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-16290-9
- Anti-SEMA3A Antibody: A Novel Therapeutic Agent to Suppress Glioblastoma Tumor Growth vol.50, pp.3, 2009, https://doi.org/10.4143/crt.2017.315
- Rational library design by functional CDR resampling vol.45, pp.None, 2009, https://doi.org/10.1016/j.nbt.2017.12.005
- Cognizance of Molecular Methods for the Generation of Mutagenic Phage Display Antibody Libraries for Affinity Maturation vol.20, pp.8, 2009, https://doi.org/10.3390/ijms20081861
- Antibody-Based Targeting of Cell Surface GRP94 Specifically Inhibits Cetuximab-Resistant Colorectal Cancer Growth vol.9, pp.11, 2009, https://doi.org/10.3390/biom9110681
- A Novel Nanobody Scaffold Optimized for Bacterial Expression and Suitable for the Construction of Ribosome Display Libraries vol.62, pp.1, 2009, https://doi.org/10.1007/s12033-019-00224-z
- An Isoform of the Oncogenic Splice Variant AIMP2-DX2 Detected by a Novel Monoclonal Antibody vol.10, pp.6, 2009, https://doi.org/10.3390/biom10060820
- Blocking of the IL-33/ST2 Signaling Axis by a Single-Chain Antibody Variable Fragment (scFv) Specific to IL-33 with a Defined Epitope vol.21, pp.18, 2020, https://doi.org/10.3390/ijms21186953
- Cell Surface GRP94 as a Novel Emerging Therapeutic Target for Monoclonal Antibody Cancer Therapy vol.10, pp.3, 2009, https://doi.org/10.3390/cells10030670
- A Novel Therapeutic Anti-ErbB3, ISU104 Exhibits Potent Antitumorigenic Activity by Inhibiting Ligand Binding and ErbB3 Heterodimerization vol.20, pp.6, 2009, https://doi.org/10.1158/1535-7163.mct-20-0907
- Semi-Automated Cell Panning for Efficient Isolation of FGFR3-Targeting Antibody vol.22, pp.12, 2009, https://doi.org/10.3390/ijms22126240