DOI QR코드

DOI QR Code

Kv1.3 voltage-gated K+ channel subunit as a potential diagnostic marker and therapeutic target for breast cancer

  • Jang, Soo-Hwa (Laboratories of Veterinary Pharmacology, College of Veterinary Medicine, Seoul National University) ;
  • Kang, Kyung-Sun (Veterinary Public Health, College of Veterinary Medicine, Seoul National University) ;
  • Ryu, Pan-Dong (Laboratories of Veterinary Pharmacology, College of Veterinary Medicine, Seoul National University) ;
  • Lee, So-Yeong (Laboratories of Veterinary Pharmacology, College of Veterinary Medicine, Seoul National University)
  • Published : 2009.08.31

Abstract

Voltage-gated $K^+$ (Kv) channels are widely expressed in the plasma membranes of numerous cells such as epithelial cells. Recently, it has been demonstrated that Kv channels are associated with the proliferation of several types of cancer cells. Specifically, Kv1.3 seems to be involved in cancer cell proliferation and apoptosis. In the present study, we examined the expression of Kv1.3 in immortalized and tumorigenic human mammary epithelial cells. We also evaluated the expression level of Kv1.3 in each stage of breast cancer using mRNA isolated from breast cancer patients. In addition, treatment with tetraethylammonium, a Kv channel blocker, suppressed tumorigenic human mammary epithelial cell proliferation. Therefore, Kv1.3 may serve as a novel molecular target for breast cancer therapy while its stage-specific expression pattern may provide a potential diagnostic marker for breast cancer development.

Keywords

References

  1. Ouadid-Ahidouch, H., Chaussade, F., Roudbaraki, M., Slomianny, C., Dewailly, E., Delcourt, P. and Prevarskaya, N. (2000) KV1.1 K(+) channels identification in human breast carcinoma cells: involvement in cell proliferation. Biochem. Biophys. Res. Commun. 278, 272-277 https://doi.org/10.1006/bbrc.2000.3790
  2. Abdul, M., Santo, A. and Hoosein, N. (2003) Activity of potassium channel-blockers in breast cancer. Anticancer Res. 23, 3347-3351
  3. Lan, M., Shi, Y., Han, Z., Hao, Z., Pan, Y., Liu, N., Guo, C., Hong, L., Wang, J., Qiao, T. and Fan, D. (2005) Expression of delayed rectifier potassium channels and their possible roles in proliferation of human gastric cancer cells. Cancer Biol. Ther. 4, 1342-1347 https://doi.org/10.4161/cbt.4.12.2175
  4. Abdul, M. and Hoosein, N. (2002) Expression and activity of potassium ion channels in human prostate cancer. Cancer Lett. 186, 99-105 https://doi.org/10.1016/S0304-3835(02)00348-8
  5. Abdul, M. and Hoosein, N. (2006) Reduced Kv1.3 potassium channel expression in human prostate cancer. J. Membr. Biol. 214, 99-102 https://doi.org/10.1007/s00232-006-0065-7
  6. Szabo, I., Adams, C. and Gulbins, E. (2004) Ion channels and membrane rafts in apoptosis. Pflugers. Arch. 448, 304-312 https://doi.org/10.1007/s00424-004-1259-4
  7. Brevet, M., Ahidouch, A., Sevestre, H., Merviel, P., El Hiani, Y., Robbe, M. and Ouadid-Ahidouch, H. (2008) Expression of K+ channels in normal and cancerous human breast. Histol. Histopathol. 23, 965-972
  8. Kang, K. S., Sun, W., Nomata, K., Morita, I., Cruz, A., Liu, C. J., Trosko, J. E. and Chang, C. C. (1998) Involvement of tyrosine phosphorylation of p185 (c-erbB2/neu) in tumorigenicity induced by X-rays and the neu oncogene in human breast epithelial cells. Mol. Carcinog 21, 225-233 https://doi.org/10.1002/(SICI)1098-2744(199804)21:4<225::AID-MC1>3.0.CO;2-J
  9. Ohya, S., Kimura, K., Niwa, S., Ohno, A., Kojima, Y., Sasaki, S., Kohri, K. and Imaizumi, Y. (2009) Malignancy grade-dependent expression of K(+)-channel subtypes in human prostate cancer. J. Pharmacol. Sci. 109, 148-151 https://doi.org/10.1254/jphs.08208SC
  10. Wood, L. D., Parsons, D. W., Jones, S., Lin, J., Sjoblom, T., Leary, R. J., Shen, D., Boca, S. M., Barber, T., Ptak, J., Silliman, N., Szabo, S., Dezso, Z., Ustyanksky, V., Nikolskaya, T., Nikolsky, Y., Karchin, R., Wilson, P. A., Kaminker, J. S., Zhang, Z., Croshaw, R., Willis, J., Dawson, D., Shipitsin, M., Willson, J. K., Sukumar, S., Polyak, K., Park, B. H., Pethiyagoda, C. L., Pant, P. V., Ballinger, D. G., Sparks, A. B., Hartigan, J., Smith, D. R., Suh, E., Papadopoulos, N., Buckhaults, P., Markowitz, S. D., Parmigiani, G., Kinzler, K. W., Velculescu, V. E. and Vogelstein, B. (2007) The genomic landscapes of human breast and colorectal cancers. Science 318, 1108-1113 https://doi.org/10.1126/science.1145720
  11. Harris, L., Fritsche, H., Mennel, R., Norton, L., Ravdin, P., Taube, S., Somerfield, M. R., Hayes, D. F. and Bast, R. C., Jr. (2007) American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J. Clin. Oncol. 25, 5287-5312 https://doi.org/10.1200/JCO.2007.14.2364
  12. Andersson, I. and Ryden, S. (2001) Early detection and prevention: benefits, costs and limitations of screening; In: Tobias, J. S., Houghton, J., Henderson, I. C. (eds.), pp. 105- 117, Breast cancer, Arnold, London
  13. Nie, L., Wu, G. and Zhang, W. (2006) Correlation of mRNA expression and protein abundance affected by multiple sequence features related to translational efficiency in Desulfovibrio vulgaris: a quantitative analysis. Genetics 174, 2229-2243 https://doi.org/10.1534/genetics.106.065862
  14. Chen, G., Gharib, T. G., Huang, C. C., Taylor, J. M., Misek, D. E., Kardia, S. L., Giordano, T. J., Iannettoni, M. D., Orringer, M. B., Hanash, S. M. and Beer, D. G. (2002) Discordant protein and mRNA expression in lung adenocarcinomas. Mol. Cell Proteomics 1, 304-313 https://doi.org/10.1074/mcp.M200008-MCP200
  15. Spitzner, M., Ousingsawat, J., Scheidt, K., Kunzelmann, K. and Schreiber, R. (2007) Voltage-gated K+ channels support proliferation of colonic carcinoma cells. Faseb. J. 21, 35-44 https://doi.org/10.1096/fj.06-6200com
  16. Shon, Y. H., Park, S. D. and Nam, K. S. (2006) Effective chemopreventive activity of genistein against human breast cancer cells. BMB Rep. 39, 448-451 https://doi.org/10.5483/BMBRep.2006.39.4.448
  17. Eling, T. E., Baek, S. J., Shim, M. S. and Lee, C. H. (2006) NSAID activated gene (NAG-1), as modulator of tumorigenesis. BMB Rep. 39, 649-655 https://doi.org/10.5483/BMBRep.2006.39.6.649
  18. Kao, C. Y., Nomata, K., Oakley, C. S., Welsch, C. W. and Chang, C. C. (1995) Two types of normal human breast epithelial cells derived from reduction mammoplasty: phenotypic characterization and response to SV40 transfection. Carcinogenesis 16, 531-538 https://doi.org/10.1093/carcin/16.3.531

Cited by

  1. K+ channels as therapeutic targets in oncology vol.2, pp.5, 2010, https://doi.org/10.4155/fmc.10.24
  2. Inhibitors of mitochondrial Kv1.3 channels induce Bax/Bak-independent death of cancer cells vol.4, pp.7, 2012, https://doi.org/10.1002/emmm.201200235
  3. Kv3.4 potassium channel-mediated electrosignaling controls cell cycle and survival of irradiated leukemia cells vol.465, pp.8, 2013, https://doi.org/10.1007/s00424-013-1249-5
  4. Physiological significance of delayed rectifier K+ channels (Kv1.3) expressed in T lymphocytes and their pathological significance in chronic kidney disease vol.65, pp.1, 2015, https://doi.org/10.1007/s12576-014-0331-x
  5. Involvement of potassium channels in the progression of cancer to a more malignant phenotype vol.1848, pp.10, 2015, https://doi.org/10.1016/j.bbamem.2014.12.008
  6. Roles of Lymphocyte Kv1.3-Channels in the Pathogenesis of Renal Diseases and Novel Therapeutic Implications of Targeting the Channels vol.2015, 2015, https://doi.org/10.1155/2015/436572
  7. Anti-proliferative effect of Kv1.3 blockers in A549 human lung adenocarcinoma in vitro and in vivo vol.651, pp.1-3, 2011, https://doi.org/10.1016/j.ejphar.2010.10.066
  8. Altered Expression of Two-Pore Domain Potassium (K2P) Channels in Cancer vol.8, pp.10, 2013, https://doi.org/10.1371/journal.pone.0074589
  9. Targeting a mitochondrial potassium channel to fight cancer vol.58, pp.1, 2015, https://doi.org/10.1016/j.ceca.2014.09.006
  10. Differential Expression of Ion Channels and Transporters During Hepatocellular Carcinoma Development vol.60, pp.8, 2015, https://doi.org/10.1007/s10620-015-3633-9
  11. Serum Starvation-Induced Voltage-Gated Potassium Channel Kv7.5 Expression and Its Regulation by Sp1 in Canine Osteosarcoma Cells vol.15, pp.1, 2014, https://doi.org/10.3390/ijms15010977
  12. Overexpression of Delayed RectifierK+Channels PromotesIn situProliferation of Leukocytes in Rat Kidneys with Advanced Chronic Renal Failure vol.2012, 2012, https://doi.org/10.1155/2012/581581
  13. An inhibitor of K+ channels modulates human endometrial tumor-initiating cells vol.11, pp.1, 2011, https://doi.org/10.1186/1475-2867-11-25
  14. Dendrotoxin-κ suppresses tumor growth induced by human lung adenocarcinoma A549 cells in nude mice vol.12, pp.1, 2011, https://doi.org/10.4142/jvs.2011.12.1.35
  15. Voltage-Gated Potassium Channel Kv1.3 Is Highly Expressed in Human Osteosarcoma and Promotes Osteosarcoma Growth vol.14, pp.9, 2013, https://doi.org/10.3390/ijms140919245
  16. Voltage-gated K+ channel blocker quinidine inhibits proliferation and induces apoptosis by regulating expression of microRNAs in human glioma U87-MG cells vol.46, pp.2, 2015, https://doi.org/10.3892/ijo.2014.2777
  17. Usefulness of targeting lymphocyte Kv1.3-channels in the treatment of respiratory diseases vol.64, pp.10, 2015, https://doi.org/10.1007/s00011-015-0855-4
  18. The influence of 8-prenylnaringenin on the activity of voltage-gated kv1.3 potassium channels in human jurkat t cells vol.17, pp.4, 2012, https://doi.org/10.2478/s11658-012-0029-0
  19. 4-aminopyridine Induces Apoptosis of Human Acute Myeloid Leukemia Cells via Increasing [Ca2+]i Through P2X7 Receptor Pathway vol.28, pp.2, 2011, https://doi.org/10.1159/000331731
  20. Inhibition of Kv1.3 Channels in Human Jurkat T Cells by Xanthohumol and Isoxanthohumol vol.248, pp.4, 2015, https://doi.org/10.1007/s00232-015-9782-0
  21. The voltage-gated potassium channel Kv1.3 is a promising multitherapeutic target against human pathologies vol.20, pp.5, 2016, https://doi.org/10.1517/14728222.2016.1112792
  22. The Role of KV7.3 in Regulating Osteoblast Maturation and Mineralization vol.17, pp.3, 2016, https://doi.org/10.3390/ijms17030407
  23. Impact of intracellular ion channels on cancer development and progression vol.45, pp.7, 2016, https://doi.org/10.1007/s00249-016-1143-0
  24. The Life and Death of Breast Cancer Cells: Proposing a Role for the Effects of Phytoestrogens on Potassium Channels vol.242, pp.2, 2011, https://doi.org/10.1007/s00232-011-9376-4
  25. Application of nanoparticle technology in the treatment of Systemic lupus erythematous vol.83, 2016, https://doi.org/10.1016/j.biopha.2016.08.020
  26. The causes of cancer revisited: “Mitochondrial malignancy” and ROS-induced oncogenic transformation – Why mitochondria are targets for cancer therapy vol.31, pp.2, 2010, https://doi.org/10.1016/j.mam.2010.02.008
  27. Positive correlation between the expression of hEag1 and HIF-1α in breast cancers: an observational study vol.4, pp.5, 2014, https://doi.org/10.1136/bmjopen-2014-005049
  28. Involvement of Kv4.1 K+ Channels in Gastric Cancer Cell Proliferation vol.33, pp.10, 2010, https://doi.org/10.1248/bpb.33.1754
  29. Contribution of voltage-gated potassium channels to the regulation of apoptosis vol.584, pp.10, 2010, https://doi.org/10.1016/j.febslet.2010.01.038
  30. : Ionic Allies in Tumor Progression? vol.26, pp.4, 2011, https://doi.org/10.1152/physiol.00005.2011