References
- Ouadid-Ahidouch, H., Chaussade, F., Roudbaraki, M., Slomianny, C., Dewailly, E., Delcourt, P. and Prevarskaya, N. (2000) KV1.1 K(+) channels identification in human breast carcinoma cells: involvement in cell proliferation. Biochem. Biophys. Res. Commun. 278, 272-277 https://doi.org/10.1006/bbrc.2000.3790
- Abdul, M., Santo, A. and Hoosein, N. (2003) Activity of potassium channel-blockers in breast cancer. Anticancer Res. 23, 3347-3351
- Lan, M., Shi, Y., Han, Z., Hao, Z., Pan, Y., Liu, N., Guo, C., Hong, L., Wang, J., Qiao, T. and Fan, D. (2005) Expression of delayed rectifier potassium channels and their possible roles in proliferation of human gastric cancer cells. Cancer Biol. Ther. 4, 1342-1347 https://doi.org/10.4161/cbt.4.12.2175
- Abdul, M. and Hoosein, N. (2002) Expression and activity of potassium ion channels in human prostate cancer. Cancer Lett. 186, 99-105 https://doi.org/10.1016/S0304-3835(02)00348-8
- Abdul, M. and Hoosein, N. (2006) Reduced Kv1.3 potassium channel expression in human prostate cancer. J. Membr. Biol. 214, 99-102 https://doi.org/10.1007/s00232-006-0065-7
- Szabo, I., Adams, C. and Gulbins, E. (2004) Ion channels and membrane rafts in apoptosis. Pflugers. Arch. 448, 304-312 https://doi.org/10.1007/s00424-004-1259-4
- Brevet, M., Ahidouch, A., Sevestre, H., Merviel, P., El Hiani, Y., Robbe, M. and Ouadid-Ahidouch, H. (2008) Expression of K+ channels in normal and cancerous human breast. Histol. Histopathol. 23, 965-972
- Kang, K. S., Sun, W., Nomata, K., Morita, I., Cruz, A., Liu, C. J., Trosko, J. E. and Chang, C. C. (1998) Involvement of tyrosine phosphorylation of p185 (c-erbB2/neu) in tumorigenicity induced by X-rays and the neu oncogene in human breast epithelial cells. Mol. Carcinog 21, 225-233 https://doi.org/10.1002/(SICI)1098-2744(199804)21:4<225::AID-MC1>3.0.CO;2-J
- Ohya, S., Kimura, K., Niwa, S., Ohno, A., Kojima, Y., Sasaki, S., Kohri, K. and Imaizumi, Y. (2009) Malignancy grade-dependent expression of K(+)-channel subtypes in human prostate cancer. J. Pharmacol. Sci. 109, 148-151 https://doi.org/10.1254/jphs.08208SC
- Wood, L. D., Parsons, D. W., Jones, S., Lin, J., Sjoblom, T., Leary, R. J., Shen, D., Boca, S. M., Barber, T., Ptak, J., Silliman, N., Szabo, S., Dezso, Z., Ustyanksky, V., Nikolskaya, T., Nikolsky, Y., Karchin, R., Wilson, P. A., Kaminker, J. S., Zhang, Z., Croshaw, R., Willis, J., Dawson, D., Shipitsin, M., Willson, J. K., Sukumar, S., Polyak, K., Park, B. H., Pethiyagoda, C. L., Pant, P. V., Ballinger, D. G., Sparks, A. B., Hartigan, J., Smith, D. R., Suh, E., Papadopoulos, N., Buckhaults, P., Markowitz, S. D., Parmigiani, G., Kinzler, K. W., Velculescu, V. E. and Vogelstein, B. (2007) The genomic landscapes of human breast and colorectal cancers. Science 318, 1108-1113 https://doi.org/10.1126/science.1145720
- Harris, L., Fritsche, H., Mennel, R., Norton, L., Ravdin, P., Taube, S., Somerfield, M. R., Hayes, D. F. and Bast, R. C., Jr. (2007) American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J. Clin. Oncol. 25, 5287-5312 https://doi.org/10.1200/JCO.2007.14.2364
- Andersson, I. and Ryden, S. (2001) Early detection and prevention: benefits, costs and limitations of screening; In: Tobias, J. S., Houghton, J., Henderson, I. C. (eds.), pp. 105- 117, Breast cancer, Arnold, London
- Nie, L., Wu, G. and Zhang, W. (2006) Correlation of mRNA expression and protein abundance affected by multiple sequence features related to translational efficiency in Desulfovibrio vulgaris: a quantitative analysis. Genetics 174, 2229-2243 https://doi.org/10.1534/genetics.106.065862
- Chen, G., Gharib, T. G., Huang, C. C., Taylor, J. M., Misek, D. E., Kardia, S. L., Giordano, T. J., Iannettoni, M. D., Orringer, M. B., Hanash, S. M. and Beer, D. G. (2002) Discordant protein and mRNA expression in lung adenocarcinomas. Mol. Cell Proteomics 1, 304-313 https://doi.org/10.1074/mcp.M200008-MCP200
- Spitzner, M., Ousingsawat, J., Scheidt, K., Kunzelmann, K. and Schreiber, R. (2007) Voltage-gated K+ channels support proliferation of colonic carcinoma cells. Faseb. J. 21, 35-44 https://doi.org/10.1096/fj.06-6200com
- Shon, Y. H., Park, S. D. and Nam, K. S. (2006) Effective chemopreventive activity of genistein against human breast cancer cells. BMB Rep. 39, 448-451 https://doi.org/10.5483/BMBRep.2006.39.4.448
- Eling, T. E., Baek, S. J., Shim, M. S. and Lee, C. H. (2006) NSAID activated gene (NAG-1), as modulator of tumorigenesis. BMB Rep. 39, 649-655 https://doi.org/10.5483/BMBRep.2006.39.6.649
- Kao, C. Y., Nomata, K., Oakley, C. S., Welsch, C. W. and Chang, C. C. (1995) Two types of normal human breast epithelial cells derived from reduction mammoplasty: phenotypic characterization and response to SV40 transfection. Carcinogenesis 16, 531-538 https://doi.org/10.1093/carcin/16.3.531
Cited by
- K+ channels as therapeutic targets in oncology vol.2, pp.5, 2010, https://doi.org/10.4155/fmc.10.24
- Inhibitors of mitochondrial Kv1.3 channels induce Bax/Bak-independent death of cancer cells vol.4, pp.7, 2012, https://doi.org/10.1002/emmm.201200235
- Kv3.4 potassium channel-mediated electrosignaling controls cell cycle and survival of irradiated leukemia cells vol.465, pp.8, 2013, https://doi.org/10.1007/s00424-013-1249-5
- Physiological significance of delayed rectifier K+ channels (Kv1.3) expressed in T lymphocytes and their pathological significance in chronic kidney disease vol.65, pp.1, 2015, https://doi.org/10.1007/s12576-014-0331-x
- Involvement of potassium channels in the progression of cancer to a more malignant phenotype vol.1848, pp.10, 2015, https://doi.org/10.1016/j.bbamem.2014.12.008
- Roles of Lymphocyte Kv1.3-Channels in the Pathogenesis of Renal Diseases and Novel Therapeutic Implications of Targeting the Channels vol.2015, 2015, https://doi.org/10.1155/2015/436572
- Anti-proliferative effect of Kv1.3 blockers in A549 human lung adenocarcinoma in vitro and in vivo vol.651, pp.1-3, 2011, https://doi.org/10.1016/j.ejphar.2010.10.066
- Altered Expression of Two-Pore Domain Potassium (K2P) Channels in Cancer vol.8, pp.10, 2013, https://doi.org/10.1371/journal.pone.0074589
- Targeting a mitochondrial potassium channel to fight cancer vol.58, pp.1, 2015, https://doi.org/10.1016/j.ceca.2014.09.006
- Differential Expression of Ion Channels and Transporters During Hepatocellular Carcinoma Development vol.60, pp.8, 2015, https://doi.org/10.1007/s10620-015-3633-9
- Serum Starvation-Induced Voltage-Gated Potassium Channel Kv7.5 Expression and Its Regulation by Sp1 in Canine Osteosarcoma Cells vol.15, pp.1, 2014, https://doi.org/10.3390/ijms15010977
- Overexpression of Delayed RectifierK+Channels PromotesIn situProliferation of Leukocytes in Rat Kidneys with Advanced Chronic Renal Failure vol.2012, 2012, https://doi.org/10.1155/2012/581581
- An inhibitor of K+ channels modulates human endometrial tumor-initiating cells vol.11, pp.1, 2011, https://doi.org/10.1186/1475-2867-11-25
- Dendrotoxin-κ suppresses tumor growth induced by human lung adenocarcinoma A549 cells in nude mice vol.12, pp.1, 2011, https://doi.org/10.4142/jvs.2011.12.1.35
- Voltage-Gated Potassium Channel Kv1.3 Is Highly Expressed in Human Osteosarcoma and Promotes Osteosarcoma Growth vol.14, pp.9, 2013, https://doi.org/10.3390/ijms140919245
- Voltage-gated K+ channel blocker quinidine inhibits proliferation and induces apoptosis by regulating expression of microRNAs in human glioma U87-MG cells vol.46, pp.2, 2015, https://doi.org/10.3892/ijo.2014.2777
- Usefulness of targeting lymphocyte Kv1.3-channels in the treatment of respiratory diseases vol.64, pp.10, 2015, https://doi.org/10.1007/s00011-015-0855-4
- The influence of 8-prenylnaringenin on the activity of voltage-gated kv1.3 potassium channels in human jurkat t cells vol.17, pp.4, 2012, https://doi.org/10.2478/s11658-012-0029-0
- 4-aminopyridine Induces Apoptosis of Human Acute Myeloid Leukemia Cells via Increasing [Ca2+]i Through P2X7 Receptor Pathway vol.28, pp.2, 2011, https://doi.org/10.1159/000331731
- Inhibition of Kv1.3 Channels in Human Jurkat T Cells by Xanthohumol and Isoxanthohumol vol.248, pp.4, 2015, https://doi.org/10.1007/s00232-015-9782-0
- The voltage-gated potassium channel Kv1.3 is a promising multitherapeutic target against human pathologies vol.20, pp.5, 2016, https://doi.org/10.1517/14728222.2016.1112792
- The Role of KV7.3 in Regulating Osteoblast Maturation and Mineralization vol.17, pp.3, 2016, https://doi.org/10.3390/ijms17030407
- Impact of intracellular ion channels on cancer development and progression vol.45, pp.7, 2016, https://doi.org/10.1007/s00249-016-1143-0
- The Life and Death of Breast Cancer Cells: Proposing a Role for the Effects of Phytoestrogens on Potassium Channels vol.242, pp.2, 2011, https://doi.org/10.1007/s00232-011-9376-4
- Application of nanoparticle technology in the treatment of Systemic lupus erythematous vol.83, 2016, https://doi.org/10.1016/j.biopha.2016.08.020
- The causes of cancer revisited: “Mitochondrial malignancy” and ROS-induced oncogenic transformation – Why mitochondria are targets for cancer therapy vol.31, pp.2, 2010, https://doi.org/10.1016/j.mam.2010.02.008
- Positive correlation between the expression of hEag1 and HIF-1α in breast cancers: an observational study vol.4, pp.5, 2014, https://doi.org/10.1136/bmjopen-2014-005049
- Involvement of Kv4.1 K+ Channels in Gastric Cancer Cell Proliferation vol.33, pp.10, 2010, https://doi.org/10.1248/bpb.33.1754
- Contribution of voltage-gated potassium channels to the regulation of apoptosis vol.584, pp.10, 2010, https://doi.org/10.1016/j.febslet.2010.01.038
- : Ionic Allies in Tumor Progression? vol.26, pp.4, 2011, https://doi.org/10.1152/physiol.00005.2011