Preparation of Heating Fuel by the Recycling of High Viscosity Waste Oil

고점도 폐유의 재활용에 의한 난방연료 제조

  • Jin, Eui (Department of Fire & Disaster Preventation, Kangwon National University) ;
  • Chung, Yeong-Jin (Department of Fire & Disaster Preventation, Kangwon National University)
  • 진의 (강원대학교 소방방재공학과) ;
  • 정영진 (강원대학교 소방방재공학과)
  • Received : 2009.05.06
  • Accepted : 2009.05.22
  • Published : 2009.08.10

Abstract

To replace waste oil with the lowest grade which has high viscosity into heating fuel, light oil and buncker C oil in waste oil was used and the fuel characteristic was analyzed by its concentration after mixing oil. The mixture conditions were controlled by the reaction time (30 s~30 min) and kept by the reaction temperature ($75{\pm}5^{\circ}C$) when mixing speed was stirred at 3400~3600 rpm. We used the buncker C oil and light oil to decrease viscosity of waste oil and the dynamic viscosity was decreased by 81~96%. Optimum mixing ratio (waste oil : buncker C oil : light oil) as heating fuel was 1 : 1 : 1. Flash point, dynamic viscosity and heating value of this case were identified $78^{\circ}C$, $20.02mm^{2}/s$, 9158 kcal/L respectively.

고점도인 최저급 폐유를 난방유로 대체하기 위하여 폐유에 희석용제로 경유,벙커C유를 이용하여 일정비율로 혼합한 후 연료 특성을 분석하였다. 혼합조건은 교반속도 3400~3600 rpm에서, 반응 시간을 30 s~30 min으로 조절하였고 반응온도는 $75{\pm}5^{\circ}C$로 유지하였다. 벙커C유, 경유를 이용하여 폐유의 점도를 낮춘 결과 최소 81%, 최대 96% 정도 감소되었다. 난방연료로서 폐유 : 벙커C유 : 경유의 최적 혼합 비율은 1 : 1 : 1이었으며 이 경우 인화점 $78^{\circ}C$, 동점도 $20.02mm^{2}/s$, 발열량 9158 kcal/L을 가짐을 확인하였다.

Keywords

References

  1. Z.-G. Cheng, ed. Heavy Oil Processing Technology, China Petrochemical Press, Beijing, China (1994)
  2. T. Noguchi, Heavy Oil Processing Handbook, Research Association for Residual Oil Processing (RARAP), Japan (1991)
  3. 이득기, 이인철, 석유와윤활, 9, 68 (1992)
  4. A. Ciajolo and R. Barbella, Fuel, 63, 657 (1984) https://doi.org/10.1016/0016-2361(84)90162-5
  5. M. Ranjbar and G. Pusch, J. Anal. Appl. Pyrolysis, 20, 185 (1991) https://doi.org/10.1016/0165-2370(91)80072-G
  6. W. E. Rudzinski and J. M. Aminabhavi, Energy & Fuels, 14, 464 (2000) https://doi.org/10.1021/ef990177i
  7. G. R. Crandall and T. H. Wise, Can. Pet., 25, 37 (1984)
  8. W. A. Hardy, S. P. Sit, and A. Stockwell, Oil Gas J., 87, 39 (1989)
  9. J. L. Zata and G. H. Cueman, J. Soc. Cosmet. Chem., 39, 211 (1988)
  10. P. A. Babay, R. T. Gettar, M. F. Silva, B. Thiele, and D. A. Batistoni, J. Chromatogr. A, 1116, 277 (2006) https://doi.org/10.1016/j.chroma.2006.03.004
  11. 에너지 기본법 시행규칙(2008. 3. 3 시행, 지식경제부령1호) 제5조 항 1 (2008)
  12. KS M 2010, 원유 및 석유제품 인화점 시험방법 (2004)
  13. KS M 2014, 원유 및 석유제품의 동점도 시험방법 및 석유제품 점도지수 계산방법 (2004)
  14. KS M 2017, 석유제품-잔류탄소분 시험방법 (2006)
  15. KS M 2057, 원유 및 연료유의 발열량 시험방법 (2006)
  16. M. J. Rosen, Surfactants and Interfacial phenomena, 2nd ed., 310, John Wiley and Sons, New York, USA (1989)
  17. B. Likos, T. J. Callahan, and C. A. Moses, SAE technical paper no. 821039, SAE : Warrendale, PA., USA (1982)
  18. C.Y. Lin and K. H. Wang, Fuel, 83, 537 (2004) https://doi.org/10.1016/j.fuel.2003.08.012
  19. C.Y. Lin and S. A. Lin, Fuel, 86, 210 (2007) https://doi.org/10.1016/j.fuel.2006.06.007
  20. T. H. Defries, S. Kishan, M. V. Smith, and J. Anthony, SAE technical paper no. 2004-01-0090, SAE: Warrendale, PA., USA. (2004)
  21. G. Chen and D. Tao, Fuel Processing Technology, 86, 499 (2005) https://doi.org/10.1016/j.fuproc.2004.03.010
  22. C. Y. Lin, C. M. Lin, and C. S. Chen, J. Ship Research, 39, 95 (1995)