Synthesis of New 2,4-Disubstituted Thiazoles and 2-(Allylidenehydrazono)-thiazolo[5,4-b]quinoxaline Derivatives

새로운 2,4-이치환된 티아졸들과 2-(Allylidenehydrazono)-thiazolo[5,4-b]quinoxaline 유도체들의 합성

  • Kim, Jong-Geun (Department of Chemistry, Kunsan National University) ;
  • Bae, Sun Kun (Department of Chemistry, Kunsan National University)
  • Received : 2008.09.08
  • Accepted : 2009.02.05
  • Published : 2009.04.10

Abstract

A series of allylidenethiosemicarbazone compounds (2a~2e) were obtained in 45~85% by condensing (E)-3-(aryl)acrylaldehyde (1a~1e) with thiosemicarbazide. Theses compounds on treatment of 2,4'-dibromoacetophenone and 2,3-dichloroquinoxaline yielded 2,4-disubstituted thiazoles (3a~3e) and 2-[(E)-3-(aryl)allylidenehydrazono]thiazolo[5,4-b]quinoxaline (4a~4e) in good yield respectively. The structures of all the newly synthesized compounds were identified by IR and $^1H-NMR$ spectral data.

(E)-3-(Aryl)acrylaldehyde 유도체들 (1a~1e)과 thiosemicarbazide 축합반응으로 일련의 알릴리덴치오세미카르바존 화합물 (2a~2e)을 45~85%로 얻었다. 이 화합물들을 2,4'-dibromoacetophenone와 2,3-dichloroquinoxaline로 처리하여 각각 2,4-이치환 티아졸류(3a~3e)와 2-[(E)-3-(aryl)allylidenehydrazone]thiazolo[5,4-b]quinoxaline류 (4a~4e)를 좋은 수율로 합성하였다. 새로이 합성한 모든 화합물들의 구조들은 IR과 $^1H-NMR$ 분광학 자료로 확인하였다.

Keywords

References

  1. X. H. Gu, X. Z. Wan, and B. Jiang, Bioorg. Med. Chem. Lett., 9, 569 (1999) https://doi.org/10.1016/S0960-894X(99)00037-2
  2. S. E. Kazzouli, S. Berteina-Raboin, A. Mouaddib, and G. Guillaumet, Tetrahedron Lett., 43, 3193 (2002) https://doi.org/10.1016/S0040-4039(02)00471-9
  3. K. D. Hargrave, F. K. Hess, and J. T. Olive, J. Med. Chem., 26, 1158 (1983) https://doi.org/10.1021/jm00362a014
  4. W. C. Patt, H. W. Hamilton, M. D. Taylor, M. J. Rayan, D. G. Taylor Jr., C. J. C. Connolly, A. M. Doberty, S. R. Klutchko, I. Sircar, and S. J. C. Olson, J. Med. Chem., 35, 2562 (1992) https://doi.org/10.1021/jm00092a006
  5. P. K. Sharma, S. N. Sawnhney, A. Gupta, G. B. Sinh, and S. Bani, Indian J. Chem., 33, 376 (1990)
  6. J. C. Jaen, L. D. Wise, B. W. Caprathe, H. Tecle, S. Bergmeie, C. C. Humblet, T. G. Heffner, L. T. Meltzner, and T. A. Pugsley, J. Med. Chem., 33, 311 (1990) https://doi.org/10.1021/jm00163a051
  7. P. Vicini, A. Geronikaki, K. Anastsia, M. Incerti, and F. Zani, Bioorg. Med. Chem., 14, 3859 (2006) https://doi.org/10.1016/j.bmc.2006.01.043
  8. R. G. Kalkhambkar, G. M. Kulkarni, H. Shivkumar, and R. N. Rao, Eur. J. Med. Chem., 42, 1272 (2007) https://doi.org/10.1016/j.ejmech.2007.01.023
  9. P. X. Franklin, A. D. Pillai, P. D. Rathod, S. Yerande, M. Nivsarkar, K. K. Vasu, and V. Sundarsanam, Eur. J. Med. Chem., 43, 129 (2008) https://doi.org/10.1016/j.ejmech.2007.02.008
  10. P. Karegoudar, M. S. Karthikeyan, D. J. Prasad, M. Hahalinga, B. S. Holla, and N. S. Kumari, Eur. J. Med. Chem., 43, 261 (2008) https://doi.org/10.1016/j.ejmech.2007.03.014
  11. Y. Y. Heum and S. K Bae, J. Korean Ind. Eng. Chem., 13, 486 (2002)
  12. Z. Li, Q. Yang, and X. Qian, Bioorg. Med. Chem., 13, 3149 (2005) https://doi.org/10.1016/j.bmc.2005.02.045
  13. X. Qian, Z. Li, and Q. Yang, Bioorg. Med. Chem., 15, 6846 (2007) https://doi.org/10.1016/j.bmc.2007.07.008
  14. P. Vicini, A. Geronikaki, M. Incerti, F. Zani J. Dearden, and M. Hewitt, Bioorg. Med. Chem., 16, 3714 (2008) https://doi.org/10.1016/j.bmc.2008.02.001
  15. L. Novak, J. Rohaly, and C. Szantay, OPP BRIEFS, 31, 693 (1999)
  16. S. C. Sinha, S. Dutta, and J. Sun, Tetrahedron Lett., 41, 8243 (2002) https://doi.org/10.1016/S0040-4039(00)01469-6
  17. T. Aoyama, S. Murata, Y. Sukuki, and M. Komodori, Tetrhedron, 62, 1 (2006) https://doi.org/10.1016/S0040-4020(05)02083-1
  18. M. Narender, M. S. Reddy, R. Sridhra, Y. V. D. Nageswar, and K. R. Rao, Tetrahedron Lett., 46, 5953 (2005) https://doi.org/10.1016/j.tetlet.2005.06.130