DOI QR코드

DOI QR Code

PKA-Mediated Stabilization of FoxH1 Negatively Regulates ERα Activity

  • Yum, Jinah (Department of Life Science and Division of Life and Pharmaceutical Sciences, Ewha Womans University) ;
  • Jeong, Hyung Min (College of Pharmacy and Research Institute of Drug Development, Chonnam National University) ;
  • Kim, Seulki (Department of Life Science and Division of Life and Pharmaceutical Sciences, Ewha Womans University) ;
  • Seo, Jin Won (College of Pharmacy and Research Institute of Drug Development, Chonnam National University) ;
  • Han, Younho (College of Pharmacy and Research Institute of Drug Development, Chonnam National University) ;
  • Lee, Kwang-Youl (College of Pharmacy and Research Institute of Drug Development, Chonnam National University) ;
  • Yeo, Chang-Yeol (Department of Life Science and Division of Life and Pharmaceutical Sciences, Ewha Womans University)
  • Received : 2009.05.15
  • Accepted : 2009.05.28
  • Published : 2009.07.31

Abstract

Estrogen receptor ${\alpha}$ ($ER{\alpha}$) mediates the mitogenic effects of estrogen. $ER{\alpha}$ signaling regulates the normal growth and differentiation of mammary tissue, but uncontrolled $ER{\alpha}$ activation increases the risk to breast cancer. Estrogen binding induces ligand-dependent $ER{\alpha}$ activation, thereby facilitating $ER{\alpha}$ dimerization, promoter binding and coactivator recruitment. $ER{\alpha}$ can also be activated in a ligand-independent manner by many signaling pathways, including protein kinase A (PKA) signaling. However, in several $ER{\alpha}$-positive breast cancer cells, PKA inhibits estrogen-dependent cell growth. FoxH1 represses the transcriptional activities of estrogen receptors and androgen receptors (AR). Interestingly, FoxH1 has been found to inhibit the PKA-induced and ligand-induced activation of AR. In the present study, we examined the effects of PKA activation on the ability of FoxH1 to represses $ER{\alpha}$ transcriptional activity. We found that PKA increases the protein stability of FoxH1, and that FoxH1 inhibits PKA-induced and estradiol-induced activation of an estrogen response element (ERE). Furthermore, in MCF7 cells, FoxH1 knockdown increased the PKA-induced and estradiol-induced activation of the ERE. These results suggest that PKA can negatively regulate $ER{\alpha}$, at least in part, through FoxH1.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Al-Dhaheri, M.H., and Rowan, B.G. (2007). Protein kinase A exhibits selective modulation of estradiol-dependent transcription in breast cancer cells that is associated with decreased ligand binding, altered estrogen receptor $\alpha$ promoter interaction, and changes in receptor phosphorylation. Mol. Endocrinol. 21, 439-456 https://doi.org/10.1210/me.2006-0059
  2. Arnold, S.F., Obourn, J.D., Jaffe, H., and Notides, A.C. (1995). Phosphorylation of the human estrogen receptor on tyrosine 537 in vivo and by src family tyrosine kinases in vitro. Mol. Endocrinol. 9, 24-33 https://doi.org/10.1210/me.9.1.24
  3. Chen, X., Weisberg, E., Fridmacher, V., Watanabe, M., Naco, G., and Whitman, M. (1997). Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 389, 85-89 https://doi.org/10.1038/38008
  4. Chen, D., Pace, P.E., Coombes, R.C., and Ali, S. (1999). Phosphorylation of human estrogen receptor $\alpha$ by protein kinase A regulates dimerization. Mol. Cell. Biol. 19, 1002-1015
  5. Chen, G., Nomura, M., Morinaga, H., Matsubara, E., Okabe, T., Goto, K., Yanase, T., Zheng, H., Lu, J., and Nawata, H. (2005). Modulation of androgen receptor transactivation by FoxH1: A newly identified androgen receptor corepressor. J. Biol. Chem. 280, 36355-36363 https://doi.org/10.1074/jbc.M506147200
  6. Cho, H., and Katzenellenbogen, B.S. (1993). Synergistic activation of estrogen receptor-mediated transcription by estradiol and protein kinase activators. Mol. Endocrinol. 7, 441-452 https://doi.org/10.1210/me.7.3.441
  7. Cui, Y., Zhang, M., Pestell, R., Curran, E.M., Welshons, W.V., and Fuqua, S.A. (2004). Phosphorylation of estrogen receptor $\alpha$ blocks its acetylation and regulates estrogen sensitivity. Cancer Res. 64, 9199-9208 https://doi.org/10.1158/0008-5472.CAN-04-2126
  8. Feng, W., Webb, P., Nguyen, P., Liu, X., Li, J., Karin, M., and Kushner, P.J. (2001). Potentiation of estrogen receptor activation function 1 (AF-1) by Src/JNK through a serine 118-independent pathway. Mol. Endocrinol. 15, 32-45 https://doi.org/10.1210/me.15.1.32
  9. Kang, K., Lee, S.B., Jung, S.H., Cha, K.H., Park, W.D., Sohn, Y.C., and Nho, C.W. (2009). Tectoridin, a poor ligand of estrogen receptor alpha, exerts its estrogenic effects via an ERK-dependent pathway. Mol. Cells 27, 351-357 https://doi.org/10.1007/s10059-009-0045-8
  10. Kato, S., Endoh, H., Masuhiro, Y., Kitamoto, T., Uchiyama, S., Sasaki, H., Masushige, S., Gotoh, Y., Nishida, E., Kawashima, H., et al. (1995). Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270, 1491-1494 https://doi.org/10.1126/science.270.5241.1491
  11. Kofron, M., Puck, H., Standley, H., Wylie, C., Old, R., Whitman, M., and Heasman, J. (2004). New roles for FoxH1 in patterning the early embryo. Development 131, 5065-5078 https://doi.org/10.1242/dev.01396
  12. Lannigan, D.A. (2003). Estrogen receptor phosphorylation. Steroids 68, 1-9 https://doi.org/10.1016/S0039-128X(02)00110-1
  13. Lee, H., and Bai, W. (2002). Regulation of estrogen receptor nuclear export by ligand-induced and p38-mediated receptor phosphorylation. Mol. Cell. Biol. 22, 5835-5845
  14. Loven, M.A., Wood, J.R., and Nardulli, A.M. (2001). Interaction of estrogen receptors $\alpha$ and $\beta$ with estrogen response elements. Mol. Cell. Endocrinol. 181, 151-163 https://doi.org/10.1016/S0303-7207(01)00491-9
  15. Massague, J., and Gomis, R.R. (2006). The logic of TGF$\beta$ signaling. FEBS Lett. 580, 2811-2820 https://doi.org/10.1016/j.febslet.2006.04.033
  16. McKenna, N.J., Lanz, R.B., and O’Malley, B.W. (1999). Nuclear receptor coregulators: cellular and molecular biology. Endocrine Rev. 20, 321-344 https://doi.org/10.1210/er.20.3.321
  17. Michalides, R., Griekspoor, A., Balkenende, A., Verwoerd, D., Janssen, L., Jalink, K., Floore, A., Velds, A., van’t Veer, L., and Neefjes, J. (2004). Tamoxifen resistance by a conformational arrest of the estrogen receptor $\alpha$ after PKA activation in breast cancer. Cancer Cell 5, 597-605 https://doi.org/10.1016/j.ccr.2004.05.016
  18. Nilsson, S., Makela, S., Treuter, E., Tujague, M., Thomsen, J., Andersson, G., Enmark, E., Pettersson, K., Warner, M., and Gustafsson, J.A. (2001). Mechanisms of estrogen action. Physiol. Rev. 81, 1535-1565
  19. Pike, M.C., Spicer, D.V., Dahmoush, L., and Press, M.F. (1993). Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol. Rev. 15, 17-35
  20. Roessler, E., Ouspenskaia, M.V., Karkera, J.D., Velez, J.I., Kantipong, A., Lacbawan, F., Bowers, P., Belmont, J.W., Towbin, J.A., Goldmuntz, E., et al. (2008). Reduced NODAL signaling strength via mutation of several pathway members including FOXH1 is linked to human heart defects and holoprosencephaly. Am. J. Hum. Genet. 83, 18-29 https://doi.org/10.1016/j.ajhg.2008.05.012
  21. Rogatsky, I., Trowbridge, J.M., and Garabedian, M.J. (1999). Potentiation of human estrogen receptor $\alpha$ transcriptional activation through phosphorylation of serines 104 and 106 by the cyclin ACDK2 complex. J. Biol. Chem. 274, 22296-22302 https://doi.org/10.1074/jbc.274.32.22296
  22. Schier, A.F. (2003). Nodal signaling in vertebrate development. Annu. Rev. Cell Dev. Biol. 19, 589-621
  23. Sun, M., Paciga, J.E., Feldman, R.I., Yuan, Z., Coppola, D., Lu, Y.Y., Shelley, S.A., Nicosia, S.V., and Cheng, J.Q. (2001). Phosphatidylinositol-3-OH Kinase (PI3K)/AKT2, activated in breast cancer, regulates and is induced by estrogen receptor $\alpha$ (ER$\alpha$) via interaction between ER$\alpha$ and PI3K. Cancer Res. 61, 5985-5991
  24. Watanabe, M., and Whitman, M. (1999). FAST-1 is a key maternal effector of mesoderm inducers in the early Xenopus embryo. Development 126, 5621-5634
  25. Whitman, M. (2001). Nodal signaling in early vertebrate embryos: themes and variations. Dev. Cell 1, 605-617 https://doi.org/10.1016/S1534-5807(01)00076-4
  26. Xu, J., and Li, Q. (2003). Review of the in vivo functions of the p160 steroid receptor coactivator family. Mol. Endocrinol. 17, 1681-1692
  27. Zhou, S., Zawel, L., Lengauer, C., Kinzler, K.W., and Vogelstein, B. (1998). Characterization of human FAST-1, a TGF $\beta$ and activin signal transducer. Mol. Cell 2, 121-127 https://doi.org/10.1016/S1097-2765(00)80120-3
  28. Zwart, W., Griekspoor, A., Berno, V., Lakeman, K., Jalink, K., Mancini, M., Neefjes, J., and Michalides, R. (2007). PKA-induced resistance to tamoxifen is associated with an altered orientation of ER$\alpha$ towards co-activator SRC-1. EMBO J. 26, 3534-3544 https://doi.org/10.1038/sj.emboj.7601791

Cited by

  1. Antagonism of Nodal signaling by BMP/Smad5 prevents ectopic primitive streak formation in the mouse amnion vol.139, pp.18, 2009, https://doi.org/10.1242/dev.075465
  2. A cellular genetics approach identifies gene-drug interactions and pinpoints drug toxicity pathway nodes vol.5, pp.None, 2009, https://doi.org/10.3389/fgene.2014.00272
  3. Smad4 suppresses the progression of renal cell carcinoma via the activation of forkhead box protein H1 vol.11, pp.4, 2015, https://doi.org/10.3892/mmr.2014.3061
  4. An estrogen receptor (ER)‐related signature in predicting prognosis of ER‐positive breast cancer following endocrine treatment vol.23, pp.8, 2009, https://doi.org/10.1111/jcmm.14338