DOI QR코드

DOI QR Code

Inhibition of Overexpressed CDC-25.1 Phosphatase Activity by Flavone in Caenorhabditis elegans

  • Kim, Koo-Seul (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kawasaki, Ichiro (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Chong, Youhoon (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Shim, Yhong-Hee (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
  • Received : 2008.11.14
  • Accepted : 2008.12.22
  • Published : 2009.03.31

Abstract

We previously reported that flavone induces embryonic lethality in Caenorhabditis elegans, which appeared to be the result of cell cycle arrest during early embryogenesis. To test this possibility, here we examined whether flavone inhibits the activity of a key cell cycle regulator, CDC-25.1 in C. elegans. A gain-of-function cdc-25.1 mutant, rr31, which exhibits extra cell divisions in intestinal cells, was used to test the inhibitory effects of flavone on CDC-25 activity. Flavone inhibited the extra cell divisions of intestinal cells in rr31, and modifications of flavone reduced the inhibitory effects. The inhibitory effects of flavone on CDC-25.1 were partly, if not completely, due to transcriptional repression.

Keywords

Acknowledgement

Supported by : Korea Forest Service, Konkuk University

References

  1. Ashcroft, N.R., Kosinski, M.E., Wickramasinghe, D., Donovan, P.J., and Golden, A. (1998). The four cdc25 genes from the nematode Caenorhabditis elegans. Gene 214, 59-66 https://doi.org/10.1016/S0378-1119(98)00228-5
  2. Ashcroft, N.R., Srayko, M., Kosinski, M.E., Mains, P.E., and Golden, A. (1999). RNA-Mediated interference of a cdc25 homolog in Caenorhabditis elegans results in defects in the embryonic cortical membrane, meiosis, and mitosis. Dev. Biol. 206, 15-32 https://doi.org/10.1006/dbio.1998.9135
  3. Boutros, R., Lobjois, V., and Ducommun, B. (2007). CDC25 phosphatases in cancer cells: key players? Good targets? Nat. Rev. Cancer 7, 495-507 https://doi.org/10.1038/nrc2169
  4. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94
  5. Brezak, M.C., Quaranta, M., Mondesert, O., Galcera, M.O., Lavergne, O., Alby, F., Cazales, M., Baldin, V., Thurieau, C., Harnett, J., et al. (2004). A novel synthetic inhibitor of CDC25 phosphatases: BN82002. Cancer Res. 64 3320-3325 https://doi.org/10.1158/0008-5472.CAN-03-3984
  6. Clucas, C., Cabello, J., Bussing, I., Schnabel, R., and Johnstone, I.L. (2002). Oncogenic potential of a C. elegans cdc25 gene is demonstrated by a gain-of-function allele. EMBO J. 21, 665-674 https://doi.org/10.1093/emboj/21.4.665
  7. Contour-Galcera, M.O., Lavergne, O., Brezak, M.C., Ducommun, B., and Prevost, G. (2004). Synthesis of small molecule CDC25 phosphatases inhibitors. Bioorg. Med. Chem. Lett. 14, 5809-5812 https://doi.org/10.1016/j.bmcl.2004.09.041
  8. Draetta, G., and Eckstein, J. (1997). Cdc25 protein phosphatases in cell proliferation. Biochim. Biophys. Acta. 1332, M53-63
  9. Galaktionov, K., Lee, A.K., Eckstein, J., Draetta, G., Meckler, J., Loda, M., and Beach, D. (1995). CDC25 phosphatases as potential human oncogenes. Science 269, 1575-1577 https://doi.org/10.1126/science.7667636
  10. Hebeisen, M., and Roy, R. (2008). CDC-25.1 stability is regulated by distinct domains to restrict cell division during embryogenesis in C. elegans. Development 135, 1259-1269 https://doi.org/10.1242/dev.014969
  11. Hofmann, K., Bucher, P., and Kajava, A.V. (1998). A model of Cdc25 phosphatase catalytic domain and Cdk-interaction surface based on the presence of a rhodanese homology domain. J. Mol. Biol. 282, 195-208 https://doi.org/10.1006/jmbi.1998.1998
  12. Imada, K., Lin, N., Liu, C., Lu, A., Chen, W., Yano, M., Sato, T., and Ito, A. (2008). Nobiletin, a citrus polymethoxy flavonoid, suppresses gene expression and production of aggrecanases-1 and -2 in collagen-induced arthritic mice. Biochem. Biophys. Res. Commun. 373, 181-185 https://doi.org/10.1016/j.bbrc.2008.05.171
  13. Kim, S., and Shim, J. (2008). A forward genetic approach for analyzing the mechanism of resistance to the anti-cancer drug, 5- fluorouracil, using Caenorhabditis elegans. Mol. Cells 25, 119-123
  14. Kostic, I., and Roy, R. (2002). Organ-specific cell division abnormalities caused by mutation in a general cell cycle regulator in C. elegans. Development 129, 2155-2165
  15. Lee, Y.U., Kawasaki, I., Lim, Y., Oh, W.S., Paik, Y.K., and Shim, Y.H. (2008). Inhibition of developmental processes by flavone in Caenorhabditis elegans and its application to the pinewood nematode, Bursaphelenchus xylophilus. Mol. Cells 26, 171-174
  16. Ngan, E.S., Hashimoto, Y., Ma, Z.Q., Tsai, M.J., and Tsai, S.Y. (2003). Overexpression of Cdc25B, an androgen receptor coactivator, in prostate cancer. Oncogene 22, 734-739 https://doi.org/10.1038/sj.onc.1206121
  17. Ono, M., Maya, Y., Haratake, M., and Nakayama, M. (2007). Synthesis and characterization of styrylchromone derivatives as beta-amyloid imaging agents. Bioorg. Med. Chem. 15, 444-450 https://doi.org/10.1016/j.bmc.2006.09.044
  18. Sadhu, K., Reed, S.I., Richardson, H., and Russell, P. (1990). Human homolog of fission yeast cdc25 mitotic inducer is predominantly expressed in G2. Proc. Natl. Acad. Sci. USA 87, 5139-5143 https://doi.org/10.1073/pnas.87.13.5139
  19. Ullmannova, V., and Popescu, N.C. (2007). Inhibition of cell proliferation, induction of apoptosis, reactivation of DLC1, and modulation of other gene expression by dietary flavone in breast cancer cell lines. Cancer Detect. Prev. 31, 110-118 https://doi.org/10.1016/j.cdp.2007.02.005
  20. Xing, X., Chen, J., and Chen, M. (2008). Expression of CDC25 phosphatases in human gastric cancer. Dig. Dis. Sci. 53, 949-953 https://doi.org/10.1007/s10620-007-9964-4
  21. Xu, X., Yamamoto, H., Sakon, M., Yasui, M., Ngan, C.Y., Fukunaga, H., Morita, T., Ogawa, M., Nagano, H., Nakamori, S., et al. (2003). Overexpression of CDC25A phosphatase is associated with hypergrowth activity and poor prognosis of human hepatocellular carcinomas. Clin. Cancer Res. 9, 1764-1772
  22. Zhang, Q., Zhao, X.H., and Wang, Z.J. (2008). Flavones and flavonols exert cytotoxic effects on a human oesophageal adenocarcinoma cell line (OE33) by causing G2/M arrest and inducing apoptosis. Food Chem. Toxicol. 46, 2042-2053 https://doi.org/10.1016/j.fct.2008.01.049

Cited by

  1. Identification of cdc25 Gene in Pinewood Nematode, Bursaphelenchus xylophilus, and Its Function in Reproduction vol.29, pp.2, 2009, https://doi.org/10.1007/s10059-010-0021-3
  2. Evaluation of fractions and 5,7-dihydroxy-4',6-dimethoxy-flavone fromClerodendrum phlomidis Linn. F. against Helicoverpa armigera Hub. vol.58, pp.2, 2009, https://doi.org/10.1590/s1516-8913201400128