DOI QR코드

DOI QR Code

The role of microRNAs in synaptic development and function

  • Corbin, Rachel (Department of Molecular, Cellular and Developmental Biology, Yale University) ;
  • Olsson-Carter, Katherine (Department of Molecular, Cellular and Developmental Biology, Yale University) ;
  • Slack, Frank (Department of Molecular, Cellular and Developmental Biology, Yale University)
  • Published : 2009.03.31

Abstract

MicroRNAs control gene expression by inhibiting translation or promoting degradation of their target mRNAs. Since the discovery of the first microRNAs, lin-4 and let-7, in C. elegans, hundreds of microRNAs have been identified as key regulators of cell fate determination, lifespan, and cancer in species ranging from plants to humans. However, while microRNAs have been shown to be particularly abundant in the brain, their role in the development and activity of the nervous system is still largely unknown. In this review, we describe recent advances in our understanding of microRNA function at synapses, the specialized structures required for communication between neurons and their targets. We also propose how these advances might inform the molecular model of memory.

Keywords

References

  1. Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., Horvitz, H. R. and Ruvkun, G. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403. 901-906 https://doi.org/10.1038/35002607
  2. Lee, R. C., Feinbaum, R. L. and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854 https://doi.org/10.1016/0092-8674(93)90529-Y
  3. Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297 https://doi.org/10.1016/S0092-8674(04)00045-5
  4. Bartel, D. P. (2009) MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233 https://doi.org/10.1016/j.cell.2009.01.002
  5. Brengues, M., Teixeira, D. and Parker, R. (2005) Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 310, 486-489 https://doi.org/10.1126/science.1115791
  6. Gao, F. B. (2008) Posttranscriptional control of neuronal development by microRNA networks. Trends Neurosci. 31, 20-26 https://doi.org/10.1016/j.tins.2007.10.004
  7. Kosik, K. S. (2006) The neuronal microRNA system. Nat. Rev. Neurosci. 7, 911-920 https://doi.org/10.1038/nrn2037
  8. Lugli, G., Torvik, V. I., Larson, J. and Smalheiser, N. R. (2008) Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J. Neurochem. 106, 650-661 https://doi.org/10.1111/j.1471-4159.2008.05413.x
  9. Martin, K. C. and Ephrussi, A. (2009) mRNA Localization: gene expression in the spatial dimension. Cell 136, 719- 730 https://doi.org/10.1016/j.cell.2009.01.044
  10. Hobert, O. (2004) Common logic of transcription factor and microRNA action. Trends Biochem. Sci. 29, 462-468 https://doi.org/10.1016/j.tibs.2004.07.001
  11. Lugli, G., Larson, J., Martone, M. E., Jones, Y. and Smalheiser, N. R. (2005) Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner J. Neurochem. 94, 896-905 https://doi.org/10.1111/j.1471-4159.2005.03224.x
  12. Hering, H. and Sheng, M. (2001) Dendritic spines: structure, dynamics and regulation. Nat. Rev. Neurosci. 2, 880-888 https://doi.org/10.1038/35104061
  13. Besse, F. and Ephrussi, A. (2008) Translational control of localized mRNAs: restricting protein synthesis in space and time. Nat. Rev. Mol. Cell Biol. 9, 971-980 https://doi.org/10.1038/nrm2548
  14. Kiebler, M. A. and DesGroseillers, L. (2000) Molecular insights into mRNA transport and local translation in the mammalian nervous system. Neuron 25, 19-28 https://doi.org/10.1016/S0896-6273(00)80868-5
  15. Garber, K. B., Visootsak, J. and Warren, S. T. (2008) Fragile X syndrome. Eur. J. Hum. Genet. 16, 666-672 https://doi.org/10.1038/ejhg.2008.61
  16. Ishizuka, A., Siomi, M. C. and Siomi, H. (2002) A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev. 16, 2497-2508 https://doi.org/10.1101/gad.1022002
  17. Caudy, A. A., Myers, M., Hannon, G. J. and Hammond, S. M. (2002) Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev. 16, 2491-2496 https://doi.org/10.1101/gad.1025202
  18. Jin, P., Zarnescu, D. C., Ceman, S., Nakamoto, M., Mowrey, J., Jongens, T. A., Nelson, D. L., Moses, K. and Warren, S. T. (2004) Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat. Neurosci. 7, 113-117 https://doi.org/10.1038/nn1174
  19. Bolduc, F. V., Bell, K., Cox, H., Broadie, K. S. and Tully, T. (2008) Excess protein synthesis in Drosophila fragile X mutants impairs long-term memory. Nat. Neurosci. 11, 1143-1145 https://doi.org/10.1038/nn.2175
  20. Sokol, N. S., Xu, P., Jan, Y. N. and Ambros, V. (2008) Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. Genes Dev. 22, 1591-1596 https://doi.org/10.1101/gad.1671708
  21. Caygill, E. E. and Johnston, L. A. (2008) Temporal regulation of metamorphic processes in Drosophila by the let-7 and miR-125 heterochronic microRNAs. Curr. Biol. 18, 943-950 https://doi.org/10.1016/j.cub.2008.06.020
  22. Pasquinelli, A. E., Reinhart, B. J., Slack, F., Martindale, M. Q., Kuroda, M. I., Maller, B., Hayward, D. C., Ball, E. E., Degnan, B., Muller, P., Spring, J., Srinivasan, A., Fishman, M., Finnerty, J., Corbo, J., Levine, M., Leahy, P., Davidson, E. and Ruvkun, G. (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86-89 https://doi.org/10.1038/35040556
  23. Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W. and Tuschl, T. (2002) Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12, 735-739 https://doi.org/10.1016/S0960-9822(02)00809-6
  24. Simon, D. J., Madison, J. M., Conery, A. L., Thompson- Peer, K. L., Soskis, M., Ruvkun, G. B., Kaplan, J. M. and Kim, J. K. (2008) The microRNA miR-1 regulates a MEF-2-dependent retrograde signal at neuromuscular junctions. Cell 133, 903-915 https://doi.org/10.1016/j.cell.2008.04.035
  25. Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M. and Greenberg, M. E. (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439, 283-289 https://doi.org/10.1038/nature04367
  26. Vo, N., Klein, M. E., Varlamova, O., Keller, D. M., Yamamoto, T., Goodman, R. H. and Impey, S. (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc. Natl. Acad. Sci. U.S.A. 102, 16426-16431 https://doi.org/10.1073/pnas.0508448102
  27. Wayman, G. A., Davare, M. ando, H., Fortin, D., Varlamova, O., Cheng, H. Y., Marks, D., Obrietan, K., Soderling, T. R., Goodman, R. H. and Impey, S. (2008) An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc. Natl. Acad. Sci. U.S.A. 105, 9093-9098 https://doi.org/10.1073/pnas.0803072105
  28. Hammond, S. M., Bernstein, E., Beach, D. and Hannon, G. J. (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293-296 https://doi.org/10.1038/35005107
  29. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811 https://doi.org/10.1038/35888
  30. Grimm, D., Streetz, K. L., Jopling, C. L., Storm, T. A., Pandey, K., Davis, C. R., Marion, P., Salazar, F. and Kay, M. A. (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441, 537-541 https://doi.org/10.1038/nature04791
  31. Gold, P. E. (2008) Protein synthesis and memory. Introduction. Neurobiol. Learn. Mem. 89, 199-200 https://doi.org/10.1016/j.nlm.2007.12.005
  32. Hernandez, P. J. and Abel, T. (2008) The role of protein synthesis in memory consolidation: progress amid decades of debate. Neurobiol. Learn. Mem. 89, 293-311 https://doi.org/10.1016/j.nlm.2007.09.010
  33. Wu, L., Wells, D., Tay, J., Mendis, D., Abbott, M. A., Barnitt, A., Quinlan, E., Heynen, A., Fallon, J. R. and Richter, J. D. (1998) CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of alpha-CaMKII mRNA at synapses. Neuron 21, 1129-1139 https://doi.org/10.1016/S0896-6273(00)80630-3
  34. Costa-Mattioli, M., Sossin, W. S., Klann, E. and Sonenberg, N. (2009) Translational control of long-lasting synaptic plasticity and memory. Neuron 61, 10-26 https://doi.org/10.1016/j.neuron.2008.10.055
  35. Ashraf, S. I. and Kunes, S. (2006) A trace of silence: memory and microRNA at the synapse. Curr. Opin. Neurobiol. 16, 535-539 https://doi.org/10.1016/j.conb.2006.08.007
  36. Ashraf, S. I., McLoon, A. L., Sclarsic, S. M. and Kunes, S. (2006) Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 124, 191-205 https://doi.org/10.1016/j.cell.2005.12.017
  37. Berdnik, D., Fan, A. P., Potter, C. J. and Luo, L. (2008) MicroRNA processing pathway regulates olfactory neuron morphogenesis. Curr. Biol. 18, 1754-1759 https://doi.org/10.1016/j.cub.2008.09.045

Cited by

  1. Alzheimer's Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans vol.6, pp.3, 2010, https://doi.org/10.1016/j.jalz.2010.03.013
  2. Antiangiogenic Therapy and Mechanisms of Tumor Resistance in Malignant Glioma vol.2010, 2010, https://doi.org/10.1155/2010/251231
  3. The role of Myc and let-7a in glioblastoma, glucose metabolism and response to therapy vol.580, 2015, https://doi.org/10.1016/j.abb.2015.07.005
  4. Knockdown of pre-mRNA cleavage factor Im 25kDa promotes neurite outgrowth vol.425, pp.4, 2012, https://doi.org/10.1016/j.bbrc.2012.07.164
  5. General Principals of miRNA Biogenesis and Regulation in the Brain vol.38, pp.1, 2013, https://doi.org/10.1038/npp.2012.87
  6. Online resources for miRNA analysis vol.46, pp.10-11, 2013, https://doi.org/10.1016/j.clinbiochem.2013.03.006
  7. A plasma microRNA signature of acute lentiviral infection vol.25, pp.17, 2011, https://doi.org/10.1097/QAD.0b013e32834b95bf
  8. Evaluation of several micro RNA (miRNA) levels in children and adolescents with attention deficit hyperactivity disorder vol.580, 2014, https://doi.org/10.1016/j.neulet.2014.07.060
  9. miRNA malfunction causes spinal motor neuron disease vol.107, pp.29, 2010, https://doi.org/10.1073/pnas.1006151107
  10. Micro RNAs: an arguable appraisal in medicine vol.50, pp.2, 2016, https://doi.org/10.1515/enr-2016-0013
  11. MicroRNA and Diseases of the Nervous System vol.69, pp.2, 2011, https://doi.org/10.1227/NEU.0b013e318215a3b3
  12. Constructing a road map from synapses to behaviour vol.10, pp.9, 2009, https://doi.org/10.1038/embor.2009.187
  13. Polyunsaturated fatty acids are involved in regulatory mechanism of fatty acid homeostasis via daf-2/insulin signaling in Caenorhabditis elegans vol.323, pp.2, 2010, https://doi.org/10.1016/j.mce.2010.03.004
  14. Up-regulation of the mitochondrial malate dehydrogenase by oxidative stress is mediated by miR-743a vol.118, pp.3, 2011, https://doi.org/10.1111/j.1471-4159.2011.07333.x
  15. Novel integrative genomic tool for interrogating lithium response in bipolar disorder vol.5, pp.2, 2015, https://doi.org/10.1038/tp.2014.139
  16. A Novel Function of MicroRNA Let-7d in Regulation of Galectin-3 Expression in Attention Deficit Hyperactivity Disorder Rat Brain vol.20, pp.6, 2010, https://doi.org/10.1111/j.1750-3639.2010.00410.x
  17. TLX—Its Emerging Role for Neurogenesis in Health and Disease vol.54, pp.1, 2017, https://doi.org/10.1007/s12035-015-9608-1