DOI QR코드

DOI QR Code

Tacrolimus Differentially Regulates the Proliferation of Conventional and Regulatory CD4+ T Cells

  • Kogina, Kazue (Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo) ;
  • Shoda, Hirofumi (Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo) ;
  • Yamaguchi, Yumi (Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo) ;
  • Tsuno, Nelson H (Department of Transfusion Medicine, Graduate School of Medicine, The University of Tokyo) ;
  • Takahashi, Koki (Department of Transfusion Medicine, Graduate School of Medicine, The University of Tokyo) ;
  • Fujio, Keishi (Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo) ;
  • Yamamoto, Kazuhiko (Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo)
  • Received : 2009.06.24
  • Accepted : 2009.07.02
  • Published : 2009.08.31

Abstract

Tacrolimus is a widely used T cell targeted immunosuppressive drug, known as a calcineurin inhibitor. However, the exact pharmacological effects of tacrolimus on $CD4^+$ T cells have yet to be elucidated. This study investigated the effects of tacrolimus on $CD4^+$ T cell subsets. Mouse or human $CD4^+$ T cells were cultured with immobilized anti-CD3/CD28 antibodies in the presence of tacrolimus. The cell division of $CD4^+$ T cells was analyzed using a flow cytometer according to the expression of Foxp3. The gene expression patterns of tacrolimus-exposed T cells were examined by quantitative PCR. In the case of conventional $CD4^+$ T cells (Tconv cells), tacrolimus inhibited T cell receptor stimulation-induced cell division. In contrast, the cell division of regulatory $CD4^+$ T cells (Treg cells) was even promoted in the presence of tacrolimus, especially in humans. Tacrolimus did not promote conversion of Tconv to Treg cells in mice. Furthermore, tacrolimus modified the expression levels of Foxp3-regulated T cell receptor signal related-genes, PTPN22 and Itk, in human Treg cells. Immunosuppressive effect of tacrolimus may be attributed to the relatively enhanced proliferation of Treg cells in association with altered gene expression levels of TCR signaling molecules.

Keywords

Acknowledgement

Supported by : Japan Society for the Promotion of Science, Ministry of Health, Labour and Welfare of Japan, Ministry of Education, Culture, Sports, Science and Technology of Japan

References

  1. Allan, S.E., Crome, S.Q., Crellin, N.K., Passerini, L., Steiner, T.S., Bacchetta, R., Roncarolo, M.G., and Levings, M.K. (2007). Activation- induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int. Immunol. 19, 345-354 https://doi.org/10.1093/intimm/dxm014
  2. Baecher-Allan, C., and Hafler, D.A. (2004). Suppressor T cells in human diseases. J. Exp. Med. 200, 273-276 https://doi.org/10.1084/jem.20040812
  3. Battaglia, M., Stabilini, A., and Roncarolo, M.G. (2005). Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 105, 4743-4748 https://doi.org/10.1182/blood-2004-10-3932
  4. Begovich, A.B., Carlton, V.E., Honigberg, L.A., Schrodi, S.J., Chokkalingam, A.P., Alexander, H.C., Ardlie, K.G., Huang, Q., Smith, A.M., Spoerke, J.M., et al. (2004). A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet. 75, 330-337 https://doi.org/10.1086/422827
  5. Bennett, C.L., Christie, J., Ramsdell, F., Brunkow, M.E., Ferguson, P.J., Whitesell, L., Kelly, T.E., Saulsbury, F.T., Chance, P.F., and Ochs, H.D. (2001). The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20-21 https://doi.org/10.1038/83713
  6. Bottini, N., Musumeci, L., Alonso, A., Rahmouni, S., Nika, K., Rostamkhani, M., MacMurray, J., Meloni, G.F., Lucarelli, P., Pellecchia, M.I et al. (2004). A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat. Genet. 36, 337-338 https://doi.org/10.1038/ng1323
  7. Brunkow, M.E., Jeffery, E.W., Hjerrild, K.A., Paeper, B., Clark, L.B., Yasayko, S.A., Wilkinson, J.E., Galas, D., Ziegler, S.F., and Ramsdell, F. (2001). Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68-73 https://doi.org/10.1038/83784
  8. Chen, W., Jin, W., Hardegen, N., Lei, K.J., Li, L., Marinos, N., McGrady, G., and Wahl, S.M. (2003). Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 198, 1875-1886 https://doi.org/10.1084/jem.20030152
  9. Dumont, F.J. (2000). FK506, an immunosuppressant targeting calcineurin function. Curr. Med. Chem. 7, 731-748 https://doi.org/10.2174/0929867003374723
  10. Gomez-Rodriguez, J., Readinger, J.A., Viorritto, I.C., Mueller, K.L., Houghtling, R.A., and Schwartzberg, P.L. (2007). Tec kinases, actin, and cell adhesion. Immunol. Rev. 218, 45-64 https://doi.org/10.1111/j.1600-065X.2007.00534.x
  11. Granelli-Piperno, A., Nolan, P., Inaba, K., and Steinman, R.M. (1990). The effect of immunosuppressive agents on the induction of nuclear factors that bind to sites on the interleukin 2 promoter. J. Exp. Med. 172, 1869-1872 https://doi.org/10.1084/jem.172.6.1869
  12. Gregersen, P.K., and Batliwalla, F. (2005). PTPN22 and rheumatoid arthritis: gratifying replication. Arthritis Rheum. 52, 1952-1955 https://doi.org/10.1002/art.21125
  13. Gregersen, P.K., Lee, H.S., Batliwalla, F., and Begovich, A.B. (2006). PTPN22: setting thresholds for autoimmunity. Semin Immunol. 18, 214-223 https://doi.org/10.1016/j.smim.2006.03.009
  14. Haxhinasto, S., Mathis, D., and Benoist, C. (2008). The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J. Exp. Med. 205, 565-574 https://doi.org/10.1084/jem.20071477
  15. Hori, S., Nomura, T., and Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057-1061 https://doi.org/10.1126/science.1079490
  16. Kiani, A., Rao, A., and Aramburu, J. (2000). Manipulating immune responses with immunosuppressive agents that target NFAT. Immunity 12, 359-372 https://doi.org/10.1016/S1074-7613(00)80188-0
  17. Mantel, P.Y., Ouaked, N., Ruckert, B., Karagiannidis, C., Welz, R., Blaser, K., and Schmidt-Weber, C.B. (2006). Molecular mechanisms underlying FOXP3 induction in human T cells. J. Immunol. 176, 3593-3602 https://doi.org/10.4049/jimmunol.176.6.3593
  18. Marson, A., Kretschmer, K., Frampton, G.M., Jacobsen, E.S., Polansky, J.K., MacIsaac, K.D., Levine, S.S., Fraenkel, E., von Boehmer, H., and Young, R.A. (2007). Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445, 931-935 https://doi.org/10.1038/nature05478
  19. Orozco, G., Sanchez, E., Gonzalez-Gay, M.A., Lopez-Nevot, M.A., Torres, B., Caliz, R., Ortego-Centeno, N., Jimenez-Alonso, J., Pascual-Salcedo, D., Balsa, A., et al. (2005). Association of a functional single-nucleotide polymorphism of PTPN22, encoding lymphoid protein phosphatase, with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Rheum. 52, 219-224 https://doi.org/10.1002/art.20771
  20. Sadlack, B., Merz, H., Schorle, H., Schimpl, A., Feller, A.C., and Horak, I. (1993). Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75, 253-261 https://doi.org/10.1016/0092-8674(93)80067-O
  21. Sakaguchi, S. (2004). Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531-562 https://doi.org/10.1146/annurev.immunol.21.120601.141122
  22. Schaeffer, E.M., Debnath, J., Yap, G., McVicar, D., Liao, X.C., Littman, D.R., Sher, A., Varmus, H.E., Lenardo, M.J., and Schwartzberg, P.L. (1999). Requirement for Tec kinases Rlk and Itk in T cell receptor signaling and immunity. Science 284, 638-641 https://doi.org/10.1126/science.284.5414.638
  23. Setoguchi, R., Hori, S., Takahashi, T., and Sakaguchi, S. (2005). Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J. Exp. Med. 201, 723-735 https://doi.org/10.1084/jem.20041982
  24. Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y., and Sakaguchi, S. (2002). Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat. Immunol. 3, 135-142 https://doi.org/10.1038/ni759
  25. Tocci, M.J., Matkovich, D.A., Collier, K.A., Kwok, P., Dumont, F., Lin, S., Degudicibus, S., Siekierka, J.J., Chin, J., and Hutchinson, N.I. (1989). The immunosuppressant FK506 selectively inhibits expression of early T cell activation genes. J. Immunol. 143, 718-726
  26. Tran, D.Q., Ramsey, H., and Shevach, E.M. (2007). Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by Tcell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood 110, 2983-2990 https://doi.org/10.1182/blood-2007-06-094656
  27. Walker, M.R., Kasprowicz, D.J., Gersuk, V.H., Benard, A., Van Landeghen, M., Buckner, J.H., and Ziegler, S.F. (2003). Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells. J. Clin. Invest. 112, 1437-1443 https://doi.org/10.1172/JCI19441
  28. Walker, M.R., Carson, B.D., Nepom, G.T., Ziegler, S.F., and Buckner, J.H. (2005). De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+CD25- cells. Proc. Natl. Acad. Sci. USA 102, 4103-4108 https://doi.org/10.1073/pnas.0407691102
  29. Wildin, R.S., Ramsdell, F., Peake, J., Faravelli, F., Casanova, J.L., Buist, N., Levy-Lahad, E., Mazzella, M., Goulet, O., Perroni, L., et al. (2001). X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27, 18-20 https://doi.org/10.1038/83707
  30. Yocum, D.E., Furst, D.E., Bensen, W.G., Burch, F.X., Borton, M.A., Mengle-Gaw, L.J., Schwartz, B.D., Wisememandle, W., and Mekki, Q.A. (2004). Safety of tacrolimus in patients with rheumatoid arthritis: long-term experience. Rheumatology 43, 992-999 https://doi.org/10.1093/rheumatology/keh155
  31. Yu, X., Sun, J.P., He, Y., Guo, X., Liu, S., Zhou, B., Hudmon, A., and Zhang, Z.Y. (2007). Structure, inhibitor, and regulatory mechanism of Lyp, a lymphoid-specific tyrosine phosphatase implicated in autoimmune diseases. Proc. Natl. Acad. Sci. USA 104, 19767-19772 https://doi.org/10.1073/pnas.0706233104

Cited by

  1. NFAT pulls the strings during CD4+ T helper cell effector functions vol.115, pp.15, 2009, https://doi.org/10.1182/blood-2009-10-233585
  2. Effect of intraportal infusion of tacrolimus on ischaemic reperfusion injury in orthotopic liver transplantation: a randomized controlled trial : Prevention of acute liver failure vol.24, pp.9, 2009, https://doi.org/10.1111/j.1432-2277.2011.01284.x
  3. Regulatory T cells as modulators of chronic allograft dysfunction vol.23, pp.5, 2009, https://doi.org/10.1016/j.coi.2011.06.005
  4. Risk factors for acute GVHD and survival after hematopoietic cell transplantation vol.119, pp.1, 2009, https://doi.org/10.1182/blood-2011-06-364265
  5. Individualized Immunosuppressive Protocol of Liver Transplant Recipient Should be Made Based on Splenic Function Status vol.129, pp.11, 2009, https://doi.org/10.4103/0366-6999.182828
  6. Low-dose oral cholecalciferol is associated with higher numbers of Helios + and total Tregs than oral calcitriol in renal allograft recipients: an observational study vol.17, pp.1, 2009, https://doi.org/10.1186/s40360-016-0066-9
  7. Efficacy of add-on tacrolimus on methotrexate to maintain clinical remission after rediscontinuation of a tumor necrosis factor inhibitor in rheumatoid arthritis patients who relapsed shortly after di vol.27, pp.1, 2017, https://doi.org/10.3109/14397595.2016.1174394
  8. Screening Immunomodulators To Skew the Antigen-Specific Autoimmune Response vol.14, pp.1, 2009, https://doi.org/10.1021/acs.molpharmaceut.6b00725
  9. Revisiting the Concept of Targeting NFAT to Control T Cell Immunity and Autoimmune Diseases vol.9, pp.None, 2018, https://doi.org/10.3389/fimmu.2018.02747
  10. Tolerogenic β2-glycoprotein I DNA vaccine and FK506 as an adjuvant attenuates experimental obstetric antiphospholipid syndrome vol.13, pp.6, 2009, https://doi.org/10.1371/journal.pone.0198821
  11. Topical tacrolimus and steroids modulate T cells in acute rejection of hand allotransplantation: Two case reports vol.40, pp.2, 2020, https://doi.org/10.1002/micr.30439
  12. Plasticity of Treg and imbalance of Treg/Th17 cells in patients with systemic sclerosis modified by FK506 vol.35, pp.None, 2009, https://doi.org/10.1177/2058738421998086
  13. Impaired humoral immunity to SARS-CoV-2 BNT162b2 vaccine in kidney transplant recipients and dialysis patients vol.6, pp.60, 2021, https://doi.org/10.1126/sciimmunol.abj1031