DOI QR코드

DOI QR Code

Magnetic resonance imagining findings of the white matter abnormalities in the brain of very-low-birth-weight infants

극소 저체중 출생아에서 뇌백질 병변의 MRI 소견

  • Choi, Jae Hyuk (Department of Pediatrics, College of Medicine, Dankook University) ;
  • Chang, Young Pyo (Department of Pediatrics, College of Medicine, Dankook University)
  • 최재혁 (단국대학교 의과대학 소아과학교실) ;
  • 장영표 (단국대학교 의과대학 소아과학교실)
  • Received : 2009.09.04
  • Accepted : 2009.11.20
  • Published : 2009.10.15

Abstract

Purpose : To observe the abnormal white matter findings on the magnetic resonance imaging (MRI) scans of very-low- birth-weight (VLBW) infant brains at term-equivalent age and to determine the clinical risk factors for the development of periventricular leukomalacia (PVL). Methods : In all, MRI was performed in 98 VLBW infants and the white matter abnormalities were observed. Clinical risk factors for cystic and noncystic PVL were determined. Results : MRI scans of 74 infants (75.5%) showed diffuse excessive high signal intensity (DEHSI) in the periventricular white matter, 17 (17.3%) lateral ventricle dilation, 5 (5.1%) and 11 (11.2%) focal punctate lesions and cystic changes in the periventricular white matter, respectively, 9 (9.1%), germinal layer hemorrhage (GLH) or subependymal cysts 3 (3.1%) intraventricular hemorrhage (>grade 2) 2 (2.0%) posthemorrhagic hydrocephalus and 2 (2.0%) periventricular hemorrhagic infarct. Gestational age (GA), 1-minute Apgar score, Clinical Risk Index for Babies-II (CRIB-II) score, and inotrope use, and GA, CRIB-II score, postnatal steroid administration, inotrope use, and abnormal white blood cell (WBC) count at admission were related to cystic PVL and noncystic PVL development, respectively (P<0.05). However, in logistic regression analysis, CRIB-II (odds ratio, 1.63, 295% confidence interval, 1.15-2.30 P=0.006) for cystic PVL, and GA (odds ratio 0.90, 95% confidence interval, 0.82-0.99 P=0.036) for noncystic PVL were only significant independently. Conclusion : White matter abnormalities could be observed on MRI scans of the VLBW infant brains at term-equivalent age, and CRIB-II and GA were only independently significant for cystic and noncystic PVL development, respectively.

목 적 : 극소 저체중 출생아에서 교정 주수 만삭(40주) 근처에 시행한 뇌 MRI 소견에서 뇌백질 이상 소견을 관찰하고 측뇌실 부위 백질연화증 발생과 관련 있는 임상 위험 인자를 관찰하고자 하였다. 방 법 : 교정 주수 만삭(40주) 근처에 뇌 MRI를 시행한 극소 저체중 출생아 98명을 대상으로 뇌 MRI의 뇌백질 이상 소견을 관찰하였다. 뇌백질 이상 소견 중 낭성 또는 비낭성 측뇌실 부위 백질 연화증 환아들의 임상 소견을 관찰하여 측뇌실 부위 백질연화증의 발생과 관련된 임상 위험 인자를 관찰하고자 하였다. 결 과 : 1) 98명의 환아 중 DEHSI가 74명(75.5%), 뇌실 확장은 17명(17.3%), 국소 백질 음영 증가는 5명(5.1%), 측뇌실 부위 낭성 소견은 11명(11.2%), 종자층 출혈 또는 상의 하 낭종이 9명(9.1%), 뇌실 내 출혈이 3명(3.1%), 출혈 후 뇌수종이 2명(2.0 %), 측뇌실 부위 출혈성 경색이 2명(2.0%) 관찰되었다. 2) 측뇌실 부위 백질연화증 발생과 관련된 임상 위험 인자로는 낭성 측뇌실 부위 백질연화증에서는 재태 기간, 1분 Apgar 점수, CRIB-II 점수, 혈압 상승제 투여가, 비낭성 측뇌실 부위 백질연화증에서는 재태 기간, CRIB-II 점수, 출생 후 스테로이드 투여, 혈압 상승제 투여, 출생 시 비정상적인 백혈구 수치 등이 통계적으로 의미 있었다(P<0.05). 로지스틱 회귀분석에서는 낭성 측뇌실 부위 백질연화증에서는 CRIB-II 점수(odd ratio, 1.63, 95% confidence interval, 1.15, 2.30, P=0.006)가 비낭성 측뇌실 부위 백질연화증에서는 재태 기간(odd ratio 0.90, 95% confidence interval, 0.82, 0.99, P=0.036)이 독립적인 위험 인자였다. 결 론 : 교정 주수 만삭 근처에 시행한 극소 저체중 출생아의 뇌 MRI는 다양한 뇌백질 이상 소견을 보였고, 측뇌실 부위 백질연화증 발생과 연관된 임상 위험 인자로는 CRIB-II 점수와 재태 기간이 의미 있었다.

Keywords

Acknowledgement

Supported by : 단국대학교

References

  1. Mirmiran M, Barnes PD, Keller K, Constantinou JC, Fleisher BE, Hintz SR, et al. Neonatal brain magnetic resonance imaging before discharge is better than serial cranial ultrasound in predicting cerebral palsy in very low birth weight preterm infants. Pediatrics 2004;114:992-8 https://doi.org/10.1542/peds.2003-0772-L
  2. Paneth N, Rudelli R, Monte W, Rodriguez E, Pinto J, Kairam R, et al. White matter necrosis in very low birth weight infants: neuropathologic and ultrasonographic findings in infants surviving six days or longer. J Pediatr 1990;116:975-84 https://doi.org/10.1016/S0022-3476(05)80664-X
  3. O'Shea TM, Klinepeter KL, Dillard RG. Prenatal events and the risk of cerebral palsy in very low birth weight infants. Am J Epidemiol 1998;147:362-9 https://doi.org/10.1093/oxfordjournals.aje.a009458
  4. Wheater M, Rennie JM. Perinatal infection is an important risk factor for cerebral palsy in very-low-birthweight infants. Dev Med Child Neurol 2000;42:364-7 https://doi.org/10.1017/S0012162200000670
  5. Maalouf EF, Duggan PJ, Rutherford MA, Counsell SJ, Fletcher AM, Battin M, et al. Magnetic resonance imaging of the brain in a cohort of extremely preterm infants. J Pediatr 1999; 135:351-7 https://doi.org/10.1016/S0022-3476(99)70133-2
  6. Maalouf EF, Duggan PJ, Counsell SJ, Rutherford MA, Cowan F, Azzopardi D, et al. Comparison of findings on cranial ultrasound and magnetic resonance imaging in preterm infants. Pediatrics 2001;107:719-27 https://doi.org/10.1542/peds.107.4.719
  7. Inder TE, Anderson NJ, Spencer C, Wells S, Volpe JJ. White matter injury in the premature infant: a comparison between serial cranial sonographic and MR findings at term. AJNR Am J Neuroradiol 2003;24:805-9
  8. Counsell SJ, Rutherford MA, Cowan FM, Edwards AD. Magnetic resonance imaging of preterm brain injury. Arch Dis Child Fetal Neonatal Ed. 2003;88:F269-74 https://doi.org/10.1136/fn.88.4.F269
  9. Dyet LE, Kennea N, Counsell SJ, Maalouf EF, Ajayi-Obe M, Duggan PJ, et al. Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment. Pediatrics 2006;118:536-48 https://doi.org/10.1542/peds.2005-1866
  10. Farrell TA, Hertzberg BS, Kliewer MA, Harris L, Paine SS. Fetal lateral ventricles: reassessment of normal values for atrial diameter at US. Radiology 1994;193:409-11 https://doi.org/10.1148/radiology.193.2.7972754
  11. Levine D, Trop I, Mehta TS, Barnes PD. MR imaging appearance of fetal cerebral ventricular morphology. Radiology 2002;223:652-60 https://doi.org/10.1148/radiol.2233011336
  12. Parry G, Tucker J, Tarnow-Mordi W. CRIB II: an update of the clinical risk index for babies score. Lancet 2003;361: 1789-91 https://doi.org/10.1016/S0140-6736(03)13397-1
  13. Bancalari E, Claure N. Definitions and diagnostic criteria for bronchopulmonary dysplasia. Semin Perinatol 2006;30:164- 70 https://doi.org/10.1053/j.semperi.2006.05.002
  14. Aida N, Nishimura G, Hachiya Y, Matsui K, Takeuchi M, Itani Y. MR imaging of perinatal brain damage: comparison of clinical outcome with initial and follow-up MR findings. AJNR Am J Neuroradiol 1998;19:1909-21
  15. Roelants-van Rijn AM, Groenendaal F, Beek FJ, Eken P, van Haastert IC, de Vries LS. Parenchymal brain injury in the preterm infant: comparison of cranial ultrasound, MRI and neurodevelopmental outcome. Neuropediatrics. 2001;32:80-9 https://doi.org/10.1055/s-2001-13875
  16. Childs AM, Cornette L, Ramenghi LA, Tanner SF, Arthur RJ, Martinez D, et al. Magnetic resonance and cranial ultrasound characteristics of periventricular white matter abnormalities in newborn infants. Clin Radiol 2001;56:647-55 https://doi.org/10.1053/crad.2001.0754
  17. Woodward LJ, Anderson PJ, Austin NC, Howard K, Inder TE. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med. 2006;355:685-94 https://doi.org/10.1056/NEJMoa053792
  18. Miller SP, Ferriero DM, Leonard C, Piecuch R, Glidden DV, Partridge JC, et al. Early brain injury in premature newborns detected with magnetic resonance imaging is associated with adverse early neurodevelopmental outcome. J Pediatr 2005; 147:609-16 https://doi.org/10.1016/j.jpeds.2005.06.033
  19. Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 2009;8:110-24 https://doi.org/10.1016/S1474-4422(08)70294-1
  20. Inder TE, Wells SJ, Mogridge NB, Spencer C, Volpe JJ. Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study. J Pediatr 2003;143:171-9 https://doi.org/10.1067/S0022-3476(03)00357-3
  21. Carmody DP, Dunn SM, Boddie-Willis AS, DeMarco JK, Lewis M. A quantitative measure of myelination development in infants, using MR images. Neuroradiology 2004;46:781-6 https://doi.org/10.1007/s00234-004-1241-z
  22. Inder TE, Warfield SK, Wang H, Hüppi PS, Volpe JJ. Abnormal cerebral structure is present at term in premature infants. Pediatrics 2005;115:286-94 https://doi.org/10.1542/peds.2004-0326
  23. Srinivasan L, Dutta R, Counsell SJ, Allsop JM, Boardman JP, Rutherford MA, et al. Quantification of deep gray matter in preterm infants at term-equivalent age using manual volumetry of 3-tesla magnetic resonance images. Pediatrics 2007; 119:759-65 https://doi.org/10.1542/peds.2006-2508
  24. Krishnan ML, Dyet LE, Boardman JP, Kapellou O, Allsop JM, Cowan F, et al. Relationship between white matter apparent diffusion coefficients in preterm infants at term- equivalent age and developmental outcome at 2 years. Pediatrics 2007;120:e604-9 https://doi.org/10.1542/peds.2006-3054
  25. Bozzao A, Di Paolo A, Mazzoleni C, Fasoli F, Simonetti A, Fantozzi LM, et al. Diffusion-weighted MR imaging in the early diagnosis of periventricular leukomalacia. Eur Radiol 2003;13:1571-6 https://doi.org/10.1007/s00330-002-1815-2
  26. Counsell SJ, Allsop JM, Harrison MC, Larkman DJ, Kennea NL, Kapellou O, et al. Diffusion-weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics 2003;112:1-7 https://doi.org/10.1542/peds.112.1.1
  27. Counsell SJ, Shen Y, Boardman JP, Larkman DJ, Kapellou O, Ward P, et al. Axial and radial diffusivity in preterm infants who have diffuse white matter changes on magnetic resonance imaging at term-equivalent age. Pediatrics 2006;117:376-86 https://doi.org/10.1542/peds.2005-0820

Cited by

  1. Neurodevelopmental Outcomes of VLBW Infants with Diffuse Excessive High Signal Intensity (DEHSI) in the White Matter of the Brain MR Imaging around a Near Term-equivalent Age vol.19, pp.4, 2009, https://doi.org/10.5385/jksn.2012.19.4.212