Acknowledgement
Supported by : Crop Functional Genomic Center, Rural Development Administration, Ministry of Science and Technology, Korea Research Foundation
References
- An, S., Park, S., Jeong, D.H., Lee, D.Y., Kang, H.G., Yu, J.H., Hur, J., Kim, S.R., Kim, Y.H., Lee, M., et al. (2003). Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol. 133, 2040-2047 https://doi.org/10.1104/pp.103.030478
- Baba, M., Takeshige, K., Baba, N., and Ohsumi, Y. (1994). Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J. Cell Biol. 124, 903-913 https://doi.org/10.1083/jcb.124.6.903
- Banergee, A.K., Chatterjee, M., Yu, Y., Suh, S.G., Miller, W.A., and Hannapel, D.J. (2006). Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. Plant Cell 18, 3443-3457 https://doi.org/10.1105/tpc.106.042473
- Bassham, D.C. (2007). Plant autophagy-more than a starvation response. Cur. Opin. Plant Biol. 10, 1-7 https://doi.org/10.1016/j.pbi.2007.06.006
- Bassham, D.C., Laporte, M., Marty, F., Moriyasu, Y., Ohsumi, Y., Olsen, L.J., and Yoshimoto, K. (2006). Autophagy in development and stress responses of plants. Autophagy 2, 2-11 https://doi.org/10.4161/auto.2092
- Biederbick, A., Kern, H.F., and Elsasser, H.P. (1995). Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur. J. Cell Biol. 66, 3-14
- Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
- Contento, A.L., Xiong, Y., and Bassham, D. (2005). Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein. Plant J. 42, 598-608 https://doi.org/10.1111/j.1365-313X.2005.02396.x
-
Doelling, J.H., Walker, J.M., Friedman, E.M., Thompson, A.R., and Vierstra, R.D. (2002). The APG8/12-activating enzyme
$APG_{7}$ is required for proper nutrient recycling and senescence in Arabidopsis thaliana J. Biol. Chem. 277, 33105-33114 https://doi.org/10.1074/jbc.M204630200 - Durrant, W.E., and Dong, X. (2004). Systemic acquired resistance. Annu. Rev. Phytopathol. 42, 185-209 https://doi.org/10.1146/annurev.phyto.42.040803.140421
- Fujiki, Y., Yoshimoto, K., and Ohsumi, Y. (2007). An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol. 143, 1132-1139 https://doi.org/10.1104/pp.106.093864
- Funakoshi, T., Matsuura, A., Noda, T., and Ohsumi, Y. (1997). Analysis of APG13 gene involved in autophagy in yeast, Saccharomyces Gene 192, 207-213 https://doi.org/10.1016/S0378-1119(97)00031-0
- Han, M.J., Jung, K.H., Yi, G., Lee, D.Y., and An, G. (2006).Rice Immature Pollen 1 (RIP1) is a regulator of late pollen development. Plant Cell Physiol. 47, 1457-1472 https://doi.org/10.1093/pcp/pcl013
-
Hanada, T., Noda, N.N., Satomi, Y., Ichimura, Y., Fujioka, Y., Takao, T., Inagaki, F., and Ohsumi, Y. (2007). The ATG12-ATG5 conjugate has a novel
$E_{3}$ -like activity for protein lipidation in autophagy. J. Biol. Chem. 282, 37298-37302 https://doi.org/10.1074/jbc.C700195200 - Hanaoka, H., Noda, T., Shirano, Y., Kato, T., Hayashi, H., Shibata, D., Tabata, S., and Ohsumi, Y. (2002). Leaf senescence and starvation induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol. 129, 1181-1193 https://doi.org/10.1104/pp.011024
- Hattori, T., Terada, T., and Hamasuna, S.T. (1994). Sequence and functional analyses of the rice gene homologous to the maize Vp1. Plant Mol. Biol. 24, 805-810 https://doi.org/10.1007/BF00029862
- Huang, T., Bohlenius, H., Eriksson, S., Parcy, F., and Nilsson, O. (2005). The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309, 1694-1696 https://doi.org/10.1126/science.1117768
- Inoue, Y., Suzuki, T., Hattori, M., Yoshimoto, K., Ohsumi, Y., and Moriyasu, Y. (2006). AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells. Plant Cell Physiol. 47, 1641-1652 https://doi.org/10.1093/pcp/pcl031
- Jeon, J.S., Lee, S., Jung, K.H., Jun, S.H., Jeong, D.H., Lee, J., Kim, C., Jang, S., Lee, S.Y., Yang, K., et al. (2000a). T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561-570 https://doi.org/10.1046/j.1365-313x.2000.00767.x
-
Jeon, J.S., Lee, S., Jung, K.H., Jun, S.H., Kim, C., and An, G. (2000b). Tissue-preferential expression of a rice
$\alpha$ -tubulin gene, OsTubA1, mediated by the first intron. Plant Physiol. 123, 1005-1014 https://doi.org/10.1104/pp.123.3.1005 - Jeong, D.H., An, S., Park, S., Kang, H.G., Park, G.G., Kim, S.R., Sim, J., Kim, Y.O., Kim, M.K., Kim, S.R., et al. (2006). Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J. 45, 123-132 https://doi.org/10.1111/j.1365-313X.2005.02610.x
- Jung, K.H., Han, M.J., Lee, D.Y., Lee, Y.S., Schreiber, L., Franke, R., Faust, A., Yephremov, A., Saedler, H., Kim, Y.W., et al. (2006). Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell 18, 3015-3032 https://doi.org/10.1105/tpc.106.042044
- Kametaka, S., Matsuura, A., Wada, Y., and Ohsumi, Y. (1996). Structural and functional analyses of ^mdR, a gene involved in autophagy in yeast. Gene 178, 139-143 https://doi.org/10.1016/0378-1119(96)00354-X
- Kim, Y.H., Song, T.B., Kim, C.H., Cho, M.K., Kim, K.M., Yang, S.Y., Ahn, B.W., and Joo, E.H. (2005). Lipid peroxidation and prooxidative activity stimulating the oxidative modification of proteins in the uterine venous plasma of preeclampsia. Korean J. Fetal. Med. 1, 23-30
- Kopitz, J., Kisen, G.O., Gordon, P.B., Bohley, P., and Seglen, P.O. (1990). Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes. J. Cell Biol. 111, 941-953 https://doi.org/10.1083/jcb.111.3.941
- Kramer, E.M., and Bennett, M.J. (2006). Auxin transport: a field in flux. Trends Plant Sci. 11, 382-386 https://doi.org/10.1016/j.tplants.2006.06.002
- Kwon, S.I., and Park, O.K. (2008). Autophagy in plants. J. Plant Biol. 51, 313-320 https://doi.org/10.1007/BF03036132
- Levine, R.L., Garland, D., Oliver, C.N., Amici, A., Climent, I., Lenz, A.G., Ahn, B.W., Shaltiel, S., and Stadtman, E.R. (1990). Determina-tion of carbonyl content in oxidatively modified proteins. Methods Enzymol. 186, 464-478 https://doi.org/10.1016/0076-6879(90)86141-H
- Liu, Y., Schiff, M., Czymmek, K., Tallóczy, Z., Levine, B., and Dinesh-Kumar, S.P. (2005). Autophagy regulates programmed cell death during the plant innate immune response. Cell 121, 567-577 https://doi.org/10.1016/j.cell.2005.03.007
- Matsuura, A., Tsukada, M., Wada, Y., and Ohsumi, Y. (1997). Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces. Gene 192, 245-250 https://doi.org/10.1016/S0378-1119(97)00084-X
- Mizushima, N., Noda, T., Yoshimori, T., Tanaka, Y., Ishii, T., George, M.D., Klionsky, D.J., Ohsumi, M., and Ohsumi, Y. (1998). A protein conjugation system essential for autophagy. Nature 395, 395-398 https://doi.org/10.1038/26506
- Moriyasu, Y., and Ohsumi, Y. (1996). Autophagy in tobacco suspen- sioncultured cells in response to sucrose starvation. Plant Physiol. 111, 1233-1241 https://doi.org/10.1104/pp.111.4.1233
- Mortimore, G.E., Hutson, N.J., and Surmacz, C.A. (1983). Quantitative correlation between proteolysis and macro- and microautophagy in mouse hepatocytes during starvation and refeeding. Proc. Natl. Acad. Sci. USA 80, 2179-2183 https://doi.org/10.1073/pnas.80.8.2179
- Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant 15, 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
- Oliver, C.N., Ahn, B.W., Moerman, E.J., Goldstein, S., and Stadtman, E.R. (1987). Age-related changes in oxidized proteins. J. Biol. Chem. 262, 5488-5491
- Patel, S., Caplan, J., and Dinesh-Kumar, S.P. (2006). Autophagy in the control of programmed cell death. Curr. Opin. Plant Biol. 9, 391-396 https://doi.org/10.1016/j.pbi.2006.05.007
- Phillips, A.R., Suttangkakul, A., and Vierstra, R.D. (2008). The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics 178, 1339-1353 https://doi.org/10.1534/genetics.107.086199
- Ryu, C.H., You, J.H., Kang, H.G., Hur, J., Kim, Y.H., Han, M.J., An, K., Chung, B.C., Lee, C.H., and An, G. (2004). Generation of TDNA gene tagging lines with a bidirectional gene trap vector and the establishment of an insertion-site database. Plant Mol. Biol. 54, 489-502 https://doi.org/10.1023/B:PLAN.0000038257.93381.05
- Schworer, C.M., and Mortimore, G.E. (1979). Glucagon-induced autophagy and proteolysis in rat liver: mediation by selective deprivation of intracellular amino acids. Proc. Natl. Acad. Sci. USA 76, 3169-3173 https://doi.org/10.1073/pnas.76.7.3169
- Shao, Y., Gao, Z., Feldman, T., and Jiang, X. (2007). Stimulation of ATG12-ATG5 conjugation by ribonucleic acid. Autophagy 3, 10-16 https://doi.org/10.4161/auto.3270
- Shintani, T., Mizushima, N., Ogawa, Y., Matsuura, A., Noda, T., and Ohsumi, Y. (1999). Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J. 18, 5234-5241 https://doi.org/10.1093/emboj/18.19.5234
- Slavikova, S., Shy, G., Yao, Y., Glozman, R., Levanony, H., Pietrokovski, S., Elazar, Z., and Galili, G. (2005). The autophagy-associated Atg8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants. J. Exp. Bot. 56, 2839-2849 https://doi.org/10.1093/jxb/eri276
- Su, W., Ma, H., Liu, C., Wu, J., and Yang, J. (2006). Identification and characterization of two rice autophagy associated genes, OsAtg8 and OsAtg4. Mol. Biol. Rep. 33, 273-278 https://doi.org/10.1007/s11033-006-9011-0
- Takeshige, K., Baba, M., Tsuboi, S., Noda, T., and Ohsumi, Y. (1992). Autophagy in yeast demonstrated with proteinasedeficient mutants and conditions for its induction. J. Cell Biol. 119, 301-311 https://doi.org/10.1083/jcb.119.2.301
- Tanida, I., Mitsushima, N., Kiyooka, M., Ohsumi, M., Ueno, T., Ohsumi, Y., and Kominami, E. (1999). APG7P/Cvt2p: a novel protein-activating enzyme essential for autophagy. Mol. Biol. Cell 10, 1367-1379 https://doi.org/10.1091/mbc.10.5.1367
- Thompson, A.R., Doelling, J.H., Suttangkakul, A., and Vierstra, R.D. (2005). Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol. 138, 2097-2110 https://doi.org/10.1104/pp.105.060673
- Tsukda, M., and Ohsumi, Y. (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333, 169-174 https://doi.org/10.1016/0014-5793(93)80398-E
- Woo, Y.M., Park, H.J., Su'udi, M., Yang, J.I., Park, J.J., Back, K., Park, Y.M., and An, G. (2007). Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol. Biol. 65, 125-136 https://doi.org/10.1007/s11103-007-9203-6
- Xiong, Y., Contento, A.L., Nguyen, P.Q., and Bassham, D.C. (2007a). Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol. 143, 291-299 https://doi.org/10.1104/pp.106.092106
- Xiong, Y., Contento, A.L., and Bassham, D.C. (2007b). Disruption of autophagy results in constitutive oxidative stress in Arabidopsis. Autophagy 3, 257-258 https://doi.org/10.4161/auto.3847
- Yoshimoto, K., Hanaoka, H., Sato, S., Kato, T., Tabata, S., Noda, T., and Ohsumi, Y. (2004). Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16, 2967-2983 https://doi.org/10.1105/tpc.104.025395
Cited by
- Gene Expression Profiles Deciphering Rice Phenotypic Variation between Nipponbare (Japonica) and 93-11 (Indica) during Oxidative Stress vol.5, pp.1, 2009, https://doi.org/10.1371/journal.pone.0008632
- TOR Is a Negative Regulator of Autophagy in Arabidopsis thaliana vol.5, pp.7, 2009, https://doi.org/10.1371/journal.pone.0011883
- Autophagy in plants and phytopathogens vol.584, pp.7, 2010, https://doi.org/10.1016/j.febslet.2010.01.007
- T-DNA 돌연변이를 이용한 벼 기능 유전체 연구 vol.37, pp.2, 2010, https://doi.org/10.5010/jpb.2010.37.2.133
- Genome-Wide Identification, Classification, and Expression Analysis of Autophagy-Associated Gene Homologues in Rice ( Oryza sativa L.) vol.18, pp.5, 2011, https://doi.org/10.1093/dnares/dsr024
- Beginning to Understand Autophagy, an Intracellular Self-Degradation System in Plants vol.53, pp.8, 2012, https://doi.org/10.1093/pcp/pcs099
- Autophagy: Pathways for Self-Eating in Plant Cells vol.63, pp.None, 2009, https://doi.org/10.1146/annurev-arplant-042811-105441
- Physiological and molecular aspects of salt stress in plants vol.46, pp.5, 2009, https://doi.org/10.3103/s0095452712050040
- Research Progress in Regulation of Reactive Oxygen Species in Plant Autophagy : Research Progress in Regulation of Reactive Oxygen Species in Plant Autophagy vol.47, pp.5, 2009, https://doi.org/10.3724/sp.j.1259.2012.00534
- Research Progress in Regulation of Reactive Oxygen Species in Plant Autophagy : Research Progress in Regulation of Reactive Oxygen Species in Plant Autophagy vol.47, pp.5, 2009, https://doi.org/10.3724/sp.j.1259.2012.00534
- Variations on a theme: plant autophagy in comparison to yeast and mammals vol.249, pp.2, 2012, https://doi.org/10.1007/s00709-011-0296-z
- NBR1-Mediated Selective Autophagy Targets Insoluble Ubiquitinated Protein Aggregates in Plant Stress Responses vol.9, pp.1, 2009, https://doi.org/10.1371/journal.pgen.1003196
- Ultrastructure of autophagy in plant cells : A review vol.9, pp.12, 2009, https://doi.org/10.4161/auto.26275
- Down-Regulation of OsSPX1 Causes High Sensitivity to Cold and Oxidative Stresses in Rice Seedlings vol.8, pp.12, 2009, https://doi.org/10.1371/journal.pone.0081849
- Autophagy, plant senescence, and nutrient recycling vol.65, pp.14, 2009, https://doi.org/10.1093/jxb/eru039
- Biochemical and molecular changes induced by salinity stress in Oryza sativa L. vol.38, pp.7, 2009, https://doi.org/10.1007/s11738-016-2185-8
- Autophagy, a Conserved Mechanism for Protein Degradation, Responds to Heat, and Other Abiotic Stresses in Capsicum annuum L. vol.7, pp.None, 2009, https://doi.org/10.3389/fpls.2016.00131
- Autophagy: An Important Biological Process That Protects Plants from Stressful Environments vol.7, pp.None, 2009, https://doi.org/10.3389/fpls.2016.02030
- Genome-wide analysis of autophagy-associated genes in foxtail millet ( Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice vol.17, pp.None, 2009, https://doi.org/10.1186/s12864-016-3113-4
- Genome-wide analysis of autophagy-related genes (ARGs) in grapevine and plant tolerance to copper stress vol.247, pp.6, 2009, https://doi.org/10.1007/s00425-018-2864-3
- The role of ion disequilibrium in induction of root cell death and autophagy by environmental stresses vol.45, pp.1, 2009, https://doi.org/10.1071/fp16380
- Stress-induced senescence and plant tolerance to abiotic stress vol.69, pp.4, 2009, https://doi.org/10.1093/jxb/erx235
- Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple vol.16, pp.2, 2009, https://doi.org/10.1111/pbi.12794
- Dicot-specific ATG8-interacting ATI3 proteins interact with conserved UBAC2 proteins and play critical roles in plant stress responses vol.14, pp.3, 2009, https://doi.org/10.1080/15548627.2017.1422856
- New advances in autophagy in plants: Regulation, selectivity and function vol.80, pp.None, 2009, https://doi.org/10.1016/j.semcdb.2017.07.018
- Knocking Out the Gene RLS1 Induces Hypersensitivity to Oxidative Stress and Premature Leaf Senescence in Rice vol.19, pp.10, 2009, https://doi.org/10.3390/ijms19102853
- Autophagy in crop plants: what's new beyond Arabidopsis ? vol.8, pp.12, 2018, https://doi.org/10.1098/rsob.180162
- Effect of Waterlogging-Induced Autophagy on Programmed Cell Death in Arabidopsis Roots vol.10, pp.None, 2009, https://doi.org/10.3389/fpls.2019.00468
- iTRAQ-Based Proteomics Analysis of Autophagy-Mediated Responses against MeJA in Laticifers of Euphorbia kansui L. vol.20, pp.15, 2009, https://doi.org/10.3390/ijms20153770
- Overexpression of Banana ATG8f Modulates Drought Stress Resistance in Arabidopsis vol.9, pp.12, 2009, https://doi.org/10.3390/biom9120814
- Autophagy-Like Cell Death Regulates Hydrogen Peroxide and Calcium Ion Distribution in Xa3/Xa26 -Mediated Resistance to Xanthomonas oryzae pv. oryzae vol.21, pp.1, 2009, https://doi.org/10.3390/ijms21010194
- Reactive oxygen species derived from NADPH oxidase regulate autophagy vol.64, pp.None, 2009, https://doi.org/10.32615/bp.2019.127
- Autophagy Dances with Phytohormones upon Multiple Stresses vol.9, pp.8, 2009, https://doi.org/10.3390/plants9081038
- In Silico Analyses of Autophagy-Related Genes in Rapeseed ( Brassica napus L.) under Different Abiotic Stresses and in Various Tissues vol.9, pp.10, 2009, https://doi.org/10.3390/plants9101393
- ATG genes, new players on early Fe toxicity response in rice (Oryza sativa) vol.139, pp.6, 2020, https://doi.org/10.1111/pbr.12860
- Autophagy-mediated compartmental cytoplasmic deletion is essential for tobacco pollen germination and male fertility vol.16, pp.12, 2009, https://doi.org/10.1080/15548627.2020.1719722
- Autophagy in plants: Physiological roles and post‐translational regulation vol.63, pp.1, 2009, https://doi.org/10.1111/jipb.12941
- Physiological Responses and Proteomic Analysis on the Cold Stress Responses of Annual Pitaya (Hylocereus spp.) Branches vol.2021, pp.None, 2009, https://doi.org/10.1155/2021/1416925
- Autophagy in Plant Abiotic Stress Management vol.22, pp.8, 2009, https://doi.org/10.3390/ijms22084075
- Overexpression of MdATG8i Enhances Drought Tolerance by Alleviating Oxidative Damage and Promoting Water Uptake in Transgenic Apple vol.22, pp.11, 2009, https://doi.org/10.3390/ijms22115517
- Conserved and Diversified Mechanism of Autophagy between Plants and Animals upon Various Stresses vol.10, pp.11, 2009, https://doi.org/10.3390/antiox10111736
- Genome-wide analysis of autophagy-related genes in Medicago truncatula highlights their roles in seed development and response to drought stress vol.11, pp.1, 2009, https://doi.org/10.1038/s41598-021-02239-6
- Autophagy Is Involved in the Viability of Overexpressing Thioredoxin o1 Tobacco BY-2 Cells under Oxidative Conditions vol.10, pp.12, 2009, https://doi.org/10.3390/antiox10121884
- Autophagy in sexual plant reproduction: new insights vol.72, pp.22, 2009, https://doi.org/10.1093/jxb/erab366