DOI QR코드

DOI QR Code

OsATG10b, an Autophagosome Component, Is Needed for Cell Survival against Oxidative Stresses in Rice

  • Shin, Jun-Hye (National Research Laboratory of Plant Functional Genomics, POSTECH Biotech Center, Division of Molecular and Life Sciences, Pohang University of Science and Technology) ;
  • Yoshimoto, Kohki (Plant Science Center, The Institute of Physical and Chemical Research) ;
  • Ohsumi, Yoshinori (Department of Cell Biology, National Institute for Basic Biology) ;
  • Jeon, Jong-seong (Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University) ;
  • An, Gynheung (National Research Laboratory of Plant Functional Genomics, POSTECH Biotech Center, Division of Molecular and Life Sciences, Pohang University of Science and Technology)
  • Received : 2008.08.15
  • Accepted : 2008.10.22
  • Published : 2009.01.31

Abstract

Autophagy degrades toxic materials and old organelles, and recycles nutrients in eukaryotic cells. Whereas the studies on autophagy have been reported in other eukaryotic cells, its functioning in plants has not been well elucidated. We analyzed the roles of OsATG10 genes, which are autophagy-related. Two rice ATG10 genes - OsATG10a and OsATG10b - share significant sequence homology (about 75%), and were ubiquitously expressed in all organs examined here. GUS assay indicated that OsATG10b was highly expressed in the mesophyll cells and vascular tissue of younger leaves, but its level of expression decreased in older leaves. We identified T-DNA insertional mutants in that gene. Those osatg10b mutants were sensitive to treatments with high salt and methyl viologen (MV). Monodansylcadaverine-staining experiments showed that the number of autophagosomes was significantly decreased in the mutants compared with the WT. Furthermore, the amount of oxidized proteins increased in MV-treated mutant seedlings. These results demonstrate that OsATG10b plays an important role in the survival of rice cells against oxidative stresses.

Keywords

Acknowledgement

Supported by : Crop Functional Genomic Center, Rural Development Administration, Ministry of Science and Technology, Korea Research Foundation

References

  1. An, S., Park, S., Jeong, D.H., Lee, D.Y., Kang, H.G., Yu, J.H., Hur, J., Kim, S.R., Kim, Y.H., Lee, M., et al. (2003). Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol. 133, 2040-2047 https://doi.org/10.1104/pp.103.030478
  2. Baba, M., Takeshige, K., Baba, N., and Ohsumi, Y. (1994). Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J. Cell Biol. 124, 903-913 https://doi.org/10.1083/jcb.124.6.903
  3. Banergee, A.K., Chatterjee, M., Yu, Y., Suh, S.G., Miller, W.A., and Hannapel, D.J. (2006). Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. Plant Cell 18, 3443-3457 https://doi.org/10.1105/tpc.106.042473
  4. Bassham, D.C. (2007). Plant autophagy-more than a starvation response. Cur. Opin. Plant Biol. 10, 1-7 https://doi.org/10.1016/j.pbi.2007.06.006
  5. Bassham, D.C., Laporte, M., Marty, F., Moriyasu, Y., Ohsumi, Y., Olsen, L.J., and Yoshimoto, K. (2006). Autophagy in development and stress responses of plants. Autophagy 2, 2-11 https://doi.org/10.4161/auto.2092
  6. Biederbick, A., Kern, H.F., and Elsasser, H.P. (1995). Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur. J. Cell Biol. 66, 3-14
  7. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  8. Contento, A.L., Xiong, Y., and Bassham, D. (2005). Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein. Plant J. 42, 598-608 https://doi.org/10.1111/j.1365-313X.2005.02396.x
  9. Doelling, J.H., Walker, J.M., Friedman, E.M., Thompson, A.R., and Vierstra, R.D. (2002). The APG8/12-activating enzyme $APG_{7}$ is required for proper nutrient recycling and senescence in Arabidopsis thaliana J. Biol. Chem. 277, 33105-33114 https://doi.org/10.1074/jbc.M204630200
  10. Durrant, W.E., and Dong, X. (2004). Systemic acquired resistance. Annu. Rev. Phytopathol. 42, 185-209 https://doi.org/10.1146/annurev.phyto.42.040803.140421
  11. Fujiki, Y., Yoshimoto, K., and Ohsumi, Y. (2007). An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol. 143, 1132-1139 https://doi.org/10.1104/pp.106.093864
  12. Funakoshi, T., Matsuura, A., Noda, T., and Ohsumi, Y. (1997). Analysis of APG13 gene involved in autophagy in yeast, Saccharomyces Gene 192, 207-213 https://doi.org/10.1016/S0378-1119(97)00031-0
  13. Han, M.J., Jung, K.H., Yi, G., Lee, D.Y., and An, G. (2006).Rice Immature Pollen 1 (RIP1) is a regulator of late pollen development. Plant Cell Physiol. 47, 1457-1472 https://doi.org/10.1093/pcp/pcl013
  14. Hanada, T., Noda, N.N., Satomi, Y., Ichimura, Y., Fujioka, Y., Takao, T., Inagaki, F., and Ohsumi, Y. (2007). The ATG12-ATG5 conjugate has a novel $E_{3}$-like activity for protein lipidation in autophagy. J. Biol. Chem. 282, 37298-37302 https://doi.org/10.1074/jbc.C700195200
  15. Hanaoka, H., Noda, T., Shirano, Y., Kato, T., Hayashi, H., Shibata, D., Tabata, S., and Ohsumi, Y. (2002). Leaf senescence and starvation induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol. 129, 1181-1193 https://doi.org/10.1104/pp.011024
  16. Hattori, T., Terada, T., and Hamasuna, S.T. (1994). Sequence and functional analyses of the rice gene homologous to the maize Vp1. Plant Mol. Biol. 24, 805-810 https://doi.org/10.1007/BF00029862
  17. Huang, T., Bohlenius, H., Eriksson, S., Parcy, F., and Nilsson, O. (2005). The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309, 1694-1696 https://doi.org/10.1126/science.1117768
  18. Inoue, Y., Suzuki, T., Hattori, M., Yoshimoto, K., Ohsumi, Y., and Moriyasu, Y. (2006). AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells. Plant Cell Physiol. 47, 1641-1652 https://doi.org/10.1093/pcp/pcl031
  19. Jeon, J.S., Lee, S., Jung, K.H., Jun, S.H., Jeong, D.H., Lee, J., Kim, C., Jang, S., Lee, S.Y., Yang, K., et al. (2000a). T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561-570 https://doi.org/10.1046/j.1365-313x.2000.00767.x
  20. Jeon, J.S., Lee, S., Jung, K.H., Jun, S.H., Kim, C., and An, G. (2000b). Tissue-preferential expression of a rice $\alpha$-tubulin gene, OsTubA1, mediated by the first intron. Plant Physiol. 123, 1005-1014 https://doi.org/10.1104/pp.123.3.1005
  21. Jeong, D.H., An, S., Park, S., Kang, H.G., Park, G.G., Kim, S.R., Sim, J., Kim, Y.O., Kim, M.K., Kim, S.R., et al. (2006). Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J. 45, 123-132 https://doi.org/10.1111/j.1365-313X.2005.02610.x
  22. Jung, K.H., Han, M.J., Lee, D.Y., Lee, Y.S., Schreiber, L., Franke, R., Faust, A., Yephremov, A., Saedler, H., Kim, Y.W., et al. (2006). Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell 18, 3015-3032 https://doi.org/10.1105/tpc.106.042044
  23. Kametaka, S., Matsuura, A., Wada, Y., and Ohsumi, Y. (1996). Structural and functional analyses of ^mdR, a gene involved in autophagy in yeast. Gene 178, 139-143 https://doi.org/10.1016/0378-1119(96)00354-X
  24. Kim, Y.H., Song, T.B., Kim, C.H., Cho, M.K., Kim, K.M., Yang, S.Y., Ahn, B.W., and Joo, E.H. (2005). Lipid peroxidation and prooxidative activity stimulating the oxidative modification of proteins in the uterine venous plasma of preeclampsia. Korean J. Fetal. Med. 1, 23-30
  25. Kopitz, J., Kisen, G.O., Gordon, P.B., Bohley, P., and Seglen, P.O. (1990). Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes. J. Cell Biol. 111, 941-953 https://doi.org/10.1083/jcb.111.3.941
  26. Kramer, E.M., and Bennett, M.J. (2006). Auxin transport: a field in flux. Trends Plant Sci. 11, 382-386 https://doi.org/10.1016/j.tplants.2006.06.002
  27. Kwon, S.I., and Park, O.K. (2008). Autophagy in plants. J. Plant Biol. 51, 313-320 https://doi.org/10.1007/BF03036132
  28. Levine, R.L., Garland, D., Oliver, C.N., Amici, A., Climent, I., Lenz, A.G., Ahn, B.W., Shaltiel, S., and Stadtman, E.R. (1990). Determina-tion of carbonyl content in oxidatively modified proteins. Methods Enzymol. 186, 464-478 https://doi.org/10.1016/0076-6879(90)86141-H
  29. Liu, Y., Schiff, M., Czymmek, K., Tallóczy, Z., Levine, B., and Dinesh-Kumar, S.P. (2005). Autophagy regulates programmed cell death during the plant innate immune response. Cell 121, 567-577 https://doi.org/10.1016/j.cell.2005.03.007
  30. Matsuura, A., Tsukada, M., Wada, Y., and Ohsumi, Y. (1997). Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces. Gene 192, 245-250 https://doi.org/10.1016/S0378-1119(97)00084-X
  31. Mizushima, N., Noda, T., Yoshimori, T., Tanaka, Y., Ishii, T., George, M.D., Klionsky, D.J., Ohsumi, M., and Ohsumi, Y. (1998). A protein conjugation system essential for autophagy. Nature 395, 395-398 https://doi.org/10.1038/26506
  32. Moriyasu, Y., and Ohsumi, Y. (1996). Autophagy in tobacco suspen- sioncultured cells in response to sucrose starvation. Plant Physiol. 111, 1233-1241 https://doi.org/10.1104/pp.111.4.1233
  33. Mortimore, G.E., Hutson, N.J., and Surmacz, C.A. (1983). Quantitative correlation between proteolysis and macro- and microautophagy in mouse hepatocytes during starvation and refeeding. Proc. Natl. Acad. Sci. USA 80, 2179-2183 https://doi.org/10.1073/pnas.80.8.2179
  34. Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant 15, 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  35. Oliver, C.N., Ahn, B.W., Moerman, E.J., Goldstein, S., and Stadtman, E.R. (1987). Age-related changes in oxidized proteins. J. Biol. Chem. 262, 5488-5491
  36. Patel, S., Caplan, J., and Dinesh-Kumar, S.P. (2006). Autophagy in the control of programmed cell death. Curr. Opin. Plant Biol. 9, 391-396 https://doi.org/10.1016/j.pbi.2006.05.007
  37. Phillips, A.R., Suttangkakul, A., and Vierstra, R.D. (2008). The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics 178, 1339-1353 https://doi.org/10.1534/genetics.107.086199
  38. Ryu, C.H., You, J.H., Kang, H.G., Hur, J., Kim, Y.H., Han, M.J., An, K., Chung, B.C., Lee, C.H., and An, G. (2004). Generation of TDNA gene tagging lines with a bidirectional gene trap vector and the establishment of an insertion-site database. Plant Mol. Biol. 54, 489-502 https://doi.org/10.1023/B:PLAN.0000038257.93381.05
  39. Schworer, C.M., and Mortimore, G.E. (1979). Glucagon-induced autophagy and proteolysis in rat liver: mediation by selective deprivation of intracellular amino acids. Proc. Natl. Acad. Sci. USA 76, 3169-3173 https://doi.org/10.1073/pnas.76.7.3169
  40. Shao, Y., Gao, Z., Feldman, T., and Jiang, X. (2007). Stimulation of ATG12-ATG5 conjugation by ribonucleic acid. Autophagy 3, 10-16 https://doi.org/10.4161/auto.3270
  41. Shintani, T., Mizushima, N., Ogawa, Y., Matsuura, A., Noda, T., and Ohsumi, Y. (1999). Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J. 18, 5234-5241 https://doi.org/10.1093/emboj/18.19.5234
  42. Slavikova, S., Shy, G., Yao, Y., Glozman, R., Levanony, H., Pietrokovski, S., Elazar, Z., and Galili, G. (2005). The autophagy-associated Atg8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants. J. Exp. Bot. 56, 2839-2849 https://doi.org/10.1093/jxb/eri276
  43. Su, W., Ma, H., Liu, C., Wu, J., and Yang, J. (2006). Identification and characterization of two rice autophagy associated genes, OsAtg8 and OsAtg4. Mol. Biol. Rep. 33, 273-278 https://doi.org/10.1007/s11033-006-9011-0
  44. Takeshige, K., Baba, M., Tsuboi, S., Noda, T., and Ohsumi, Y. (1992). Autophagy in yeast demonstrated with proteinasedeficient mutants and conditions for its induction. J. Cell Biol. 119, 301-311 https://doi.org/10.1083/jcb.119.2.301
  45. Tanida, I., Mitsushima, N., Kiyooka, M., Ohsumi, M., Ueno, T., Ohsumi, Y., and Kominami, E. (1999). APG7P/Cvt2p: a novel protein-activating enzyme essential for autophagy. Mol. Biol. Cell 10, 1367-1379 https://doi.org/10.1091/mbc.10.5.1367
  46. Thompson, A.R., Doelling, J.H., Suttangkakul, A., and Vierstra, R.D. (2005). Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol. 138, 2097-2110 https://doi.org/10.1104/pp.105.060673
  47. Tsukda, M., and Ohsumi, Y. (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333, 169-174 https://doi.org/10.1016/0014-5793(93)80398-E
  48. Woo, Y.M., Park, H.J., Su'udi, M., Yang, J.I., Park, J.J., Back, K., Park, Y.M., and An, G. (2007). Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol. Biol. 65, 125-136 https://doi.org/10.1007/s11103-007-9203-6
  49. Xiong, Y., Contento, A.L., Nguyen, P.Q., and Bassham, D.C. (2007a). Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol. 143, 291-299 https://doi.org/10.1104/pp.106.092106
  50. Xiong, Y., Contento, A.L., and Bassham, D.C. (2007b). Disruption of autophagy results in constitutive oxidative stress in Arabidopsis. Autophagy 3, 257-258 https://doi.org/10.4161/auto.3847
  51. Yoshimoto, K., Hanaoka, H., Sato, S., Kato, T., Tabata, S., Noda, T., and Ohsumi, Y. (2004). Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16, 2967-2983 https://doi.org/10.1105/tpc.104.025395

Cited by

  1. Gene Expression Profiles Deciphering Rice Phenotypic Variation between Nipponbare (Japonica) and 93-11 (Indica) during Oxidative Stress vol.5, pp.1, 2009, https://doi.org/10.1371/journal.pone.0008632
  2. TOR Is a Negative Regulator of Autophagy in Arabidopsis thaliana vol.5, pp.7, 2009, https://doi.org/10.1371/journal.pone.0011883
  3. Autophagy in plants and phytopathogens vol.584, pp.7, 2010, https://doi.org/10.1016/j.febslet.2010.01.007
  4. T-DNA 돌연변이를 이용한 벼 기능 유전체 연구 vol.37, pp.2, 2010, https://doi.org/10.5010/jpb.2010.37.2.133
  5. Genome-Wide Identification, Classification, and Expression Analysis of Autophagy-Associated Gene Homologues in Rice ( Oryza sativa L.) vol.18, pp.5, 2011, https://doi.org/10.1093/dnares/dsr024
  6. Beginning to Understand Autophagy, an Intracellular Self-Degradation System in Plants vol.53, pp.8, 2012, https://doi.org/10.1093/pcp/pcs099
  7. Autophagy: Pathways for Self-Eating in Plant Cells vol.63, pp.None, 2009, https://doi.org/10.1146/annurev-arplant-042811-105441
  8. Physiological and molecular aspects of salt stress in plants vol.46, pp.5, 2009, https://doi.org/10.3103/s0095452712050040
  9. Research Progress in Regulation of Reactive Oxygen Species in Plant Autophagy : Research Progress in Regulation of Reactive Oxygen Species in Plant Autophagy vol.47, pp.5, 2009, https://doi.org/10.3724/sp.j.1259.2012.00534
  10. Research Progress in Regulation of Reactive Oxygen Species in Plant Autophagy : Research Progress in Regulation of Reactive Oxygen Species in Plant Autophagy vol.47, pp.5, 2009, https://doi.org/10.3724/sp.j.1259.2012.00534
  11. Variations on a theme: plant autophagy in comparison to yeast and mammals vol.249, pp.2, 2012, https://doi.org/10.1007/s00709-011-0296-z
  12. NBR1-Mediated Selective Autophagy Targets Insoluble Ubiquitinated Protein Aggregates in Plant Stress Responses vol.9, pp.1, 2009, https://doi.org/10.1371/journal.pgen.1003196
  13. Ultrastructure of autophagy in plant cells : A review vol.9, pp.12, 2009, https://doi.org/10.4161/auto.26275
  14. Down-Regulation of OsSPX1 Causes High Sensitivity to Cold and Oxidative Stresses in Rice Seedlings vol.8, pp.12, 2009, https://doi.org/10.1371/journal.pone.0081849
  15. Autophagy, plant senescence, and nutrient recycling vol.65, pp.14, 2009, https://doi.org/10.1093/jxb/eru039
  16. Biochemical and molecular changes induced by salinity stress in Oryza sativa L. vol.38, pp.7, 2009, https://doi.org/10.1007/s11738-016-2185-8
  17. Autophagy, a Conserved Mechanism for Protein Degradation, Responds to Heat, and Other Abiotic Stresses in Capsicum annuum L. vol.7, pp.None, 2009, https://doi.org/10.3389/fpls.2016.00131
  18. Autophagy: An Important Biological Process That Protects Plants from Stressful Environments vol.7, pp.None, 2009, https://doi.org/10.3389/fpls.2016.02030
  19. Genome-wide analysis of autophagy-associated genes in foxtail millet ( Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice vol.17, pp.None, 2009, https://doi.org/10.1186/s12864-016-3113-4
  20. Genome-wide analysis of autophagy-related genes (ARGs) in grapevine and plant tolerance to copper stress vol.247, pp.6, 2009, https://doi.org/10.1007/s00425-018-2864-3
  21. The role of ion disequilibrium in induction of root cell death and autophagy by environmental stresses vol.45, pp.1, 2009, https://doi.org/10.1071/fp16380
  22. Stress-induced senescence and plant tolerance to abiotic stress vol.69, pp.4, 2009, https://doi.org/10.1093/jxb/erx235
  23. Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple vol.16, pp.2, 2009, https://doi.org/10.1111/pbi.12794
  24. Dicot-specific ATG8-interacting ATI3 proteins interact with conserved UBAC2 proteins and play critical roles in plant stress responses vol.14, pp.3, 2009, https://doi.org/10.1080/15548627.2017.1422856
  25. New advances in autophagy in plants: Regulation, selectivity and function vol.80, pp.None, 2009, https://doi.org/10.1016/j.semcdb.2017.07.018
  26. Knocking Out the Gene RLS1 Induces Hypersensitivity to Oxidative Stress and Premature Leaf Senescence in Rice vol.19, pp.10, 2009, https://doi.org/10.3390/ijms19102853
  27. Autophagy in crop plants: what's new beyond Arabidopsis ? vol.8, pp.12, 2018, https://doi.org/10.1098/rsob.180162
  28. Effect of Waterlogging-Induced Autophagy on Programmed Cell Death in Arabidopsis Roots vol.10, pp.None, 2009, https://doi.org/10.3389/fpls.2019.00468
  29. iTRAQ-Based Proteomics Analysis of Autophagy-Mediated Responses against MeJA in Laticifers of Euphorbia kansui L. vol.20, pp.15, 2009, https://doi.org/10.3390/ijms20153770
  30. Overexpression of Banana ATG8f Modulates Drought Stress Resistance in Arabidopsis vol.9, pp.12, 2009, https://doi.org/10.3390/biom9120814
  31. Autophagy-Like Cell Death Regulates Hydrogen Peroxide and Calcium Ion Distribution in Xa3/Xa26 -Mediated Resistance to Xanthomonas oryzae pv. oryzae vol.21, pp.1, 2009, https://doi.org/10.3390/ijms21010194
  32. Reactive oxygen species derived from NADPH oxidase regulate autophagy vol.64, pp.None, 2009, https://doi.org/10.32615/bp.2019.127
  33. Autophagy Dances with Phytohormones upon Multiple Stresses vol.9, pp.8, 2009, https://doi.org/10.3390/plants9081038
  34. In Silico Analyses of Autophagy-Related Genes in Rapeseed ( Brassica napus L.) under Different Abiotic Stresses and in Various Tissues vol.9, pp.10, 2009, https://doi.org/10.3390/plants9101393
  35. ATG genes, new players on early Fe toxicity response in rice (Oryza sativa) vol.139, pp.6, 2020, https://doi.org/10.1111/pbr.12860
  36. Autophagy-mediated compartmental cytoplasmic deletion is essential for tobacco pollen germination and male fertility vol.16, pp.12, 2009, https://doi.org/10.1080/15548627.2020.1719722
  37. Autophagy in plants: Physiological roles and post‐translational regulation vol.63, pp.1, 2009, https://doi.org/10.1111/jipb.12941
  38. Physiological Responses and Proteomic Analysis on the Cold Stress Responses of Annual Pitaya (Hylocereus spp.) Branches vol.2021, pp.None, 2009, https://doi.org/10.1155/2021/1416925
  39. Autophagy in Plant Abiotic Stress Management vol.22, pp.8, 2009, https://doi.org/10.3390/ijms22084075
  40. Overexpression of MdATG8i Enhances Drought Tolerance by Alleviating Oxidative Damage and Promoting Water Uptake in Transgenic Apple vol.22, pp.11, 2009, https://doi.org/10.3390/ijms22115517
  41. Conserved and Diversified Mechanism of Autophagy between Plants and Animals upon Various Stresses vol.10, pp.11, 2009, https://doi.org/10.3390/antiox10111736
  42. Genome-wide analysis of autophagy-related genes in Medicago truncatula highlights their roles in seed development and response to drought stress vol.11, pp.1, 2009, https://doi.org/10.1038/s41598-021-02239-6
  43. Autophagy Is Involved in the Viability of Overexpressing Thioredoxin o1 Tobacco BY-2 Cells under Oxidative Conditions vol.10, pp.12, 2009, https://doi.org/10.3390/antiox10121884
  44. Autophagy in sexual plant reproduction: new insights vol.72, pp.22, 2009, https://doi.org/10.1093/jxb/erab366