Development of SWAT SD-HRU Pre-processor Module for Accurate Estimation of Slope and Slope Length of Each HRU Considering Spatial Topographic Characteristics in SWAT

SWAT HRU 단위의 경사도/경사장 산정을 위한 SWAT SD-HRU 전처리 프로세서 모듈 개발

  • Jang, Wonseok (Department of Regional Infrastructure Engineering, Kangwon University) ;
  • Yoo, Dongsun (Department of Regional Infrastructure Engineering, Kangwon University) ;
  • Chung, Il-moon (Korea Institute of Construction Technology) ;
  • Kim, Namwon (Korea Institute of Construction Technology) ;
  • Jun, Mansig (National Kangwon Development Research Institute) ;
  • Park, Younshik (Department of Regional Infrastructure Engineering, Kangwon University) ;
  • Kim, Jonggun (Department of Regional Infrastructure Engineering, Kangwon University) ;
  • Lim, Kyoung-Jae (Department of Regional Infrastructure Engineering, Kangwon University)
  • 장원석 (강원대학교 지역건설공학과) ;
  • 유동선 (강원대학교 지역건설공학과) ;
  • 정일문 (한국건설기술연구원) ;
  • 김남원 (한국건설기술연구원) ;
  • 전만식 (강원발전연구원) ;
  • 박윤식 (강원대학교 지역건설공학과) ;
  • 김종건 (강원대학교 지역건설공학과) ;
  • 임경재 (강원대학교 지역건설공학과)
  • Received : 2008.12.03
  • Accepted : 2009.01.24
  • Published : 2009.05.30

Abstract

The Soil and Water Assessment Tool (SWAT) model, semi-distributed model, first divides the watershed into multiple subwatersheds, and then extracts the basic computation element, called the Hydrologic Response Unit (HRU). In the process of HRU generation, the spatial information of land use and soil maps within each subwatershed is lost. The SWAT model estimates the HRU topographic data based on the average slope of each subwatershed, and then use this topographic datum for all HRUs within the subwatershed. To improve the SWAT capabilities for various watershed scenarios, the Spatially Distributed-HRU (SD-HRU) pre-processor module was developed in this study to simulate site-specific topographic data. The SD-HRU was applied to the Hae-an watershed, where field slope lengths and slopes are measured for all agricultural fields. The analysis revealed that the SD-HRU pre-processor module needs to be applied in SWAT sediment simulation for accurate analysis of soil erosion and sediment behaviors. If the SD-HRU pre-processor module is not applied in SWAT runs, the other SWAT factors may be over or under estimated, resulting in errors in physical and empirical computation modules although the SWAT estimated flow and sediment values match the measured data reasonably well.

Keywords

Acknowledgement

Grant : 농촌 비점오염원 제어를 위한 효율적 관리기술 개발

Supported by : 환경부, 수자원

References

  1. 권영식, 이형호, 한욱, 김원형, 김동진, 김두일, 염승준(1990). 해안분지의 지구과학적 분석. 한국지구과학회지, 11(3), pp. 236-241
  2. 김종건, 박윤식, 김남원, 정일문, 장원석, 박준호, 문종필, 임 경재(2008). 저해상도 DEM 사용으로 인한 SWAT 지형인자 추출 오류 개선 모듈 개발 및 평가. 수질보전 한국물환경학회지, 24(4), pp. 488-498
  3. 김종건, 박윤식, 김남원, 허성구, 김기성, 최중대, 임경재(2007). 정확한 SWAT 토양유실 및 유사 모의를 위한 경사장 산정 모듈의 개발. 2007공동 추계학술발표회 논문집, 대한상하수도학회·한국물환경학회, pp. 91-97
  4. 박윤식, 김종건, 김남원, 박준호, 장원석, 최중대, 임경재(2008). VFSMOD-W 모형을 이용한 SWAT 모형의 초생대 유사 저감 효율 모듈 개선, 수질보전 한국물환경학회 지, 24(4), pp. 473-479
  5. 유동선, 김기성, 장원석, 전만식, 양재의, 김성철, 안재훈, 임면 유역의 유사량 평가. 수질보전 한국물환경학회지, 24(5), pp. 569-580
  6. 전만식(2007). 소양강댐 흙탕물저감대책. 강원도발전연구원연구보고서
  7. 허성구, 김남원, 박윤식, 김종건, 김성준, 안재훈, 김기성, 임경재(2008). SWAT ArcView GIS Extension Patch를 이용한 소유역 분할에 따른 수문 및 유사 거동에 미치는 영향 평가. 수질보전 한국물환경학회지, 24(2), pp. 147-155
  8. Arnold, J. G. (1992). Spatial scale variability in model developmentand parameterization. Ph.D. Dissertation, Purdue University, West Lafayette, IN
  9. Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J.R. (1998). Large area hydrologic modeling and assessment: part I: model development. Journal of American Water Resources Association, 34(1), pp. 73-89 https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  10. Hooghoudt, S. B. (1940). Bijdrage tot de kennis van enige natuurkundige grootheden van de grond. Versl, Landbouwkd, Onderz, 46, pp. 515-707
  11. Jha, M., Arnold, J. G., Gassman, P. W., Giorgi, F., and Gu, R. R. (2006). Climate change sensitivity assessment on upper Mississippi river basin streamflows using SWAT. Journal of American Water Resources Association, 42(4), pp. 997-1016 https://doi.org/10.1111/j.1752-1688.2006.tb04510.x
  12. Jha, M., Gassman, P. W., Secchi, S., Roy, G., and Arnold, J. G. (2002). Impact of watershed subdivision level on flows, sediment loads, and nutrient lossless predicted by SWAT, Working Paper 02-WP, 315, pp. 22-23
  13. Luo, Y., Zhang, X., Liu, X., Ficklin, D., and Zhang, M. (2008). Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California. Environmental Pollution, 156(3), pp. 1171-1181 https://doi.org/10.1016/j.envpol.2008.04.005
  14. Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R. (2005a). Soil and Water Assessment Tool Theoretical Documentation Version 2005. USDA, ARS, Temple, Texas
  15. Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R. (2005b). Soil and Water Assessment Tool User's Manual Version 2005. USDA, ARS, Temple, Texas
  16. Sloan, P. G., Morre, I. D., Coltharp, G. B., and Eigel, J. D. (1983). Modeling surface and subsurface stormflow on steeplysloping forested watersheds. Water Resources Inst, Report 142, Univ, Kentucky, Lexington
  17. Sloan, P. G. and Moore, I. D. (1984). Modeling subsurface stormflow on steeply sloping forested watersheds. Water Resources Research, 20(12), pp. 1815-1822 https://doi.org/10.1029/WR020i012p01815
  18. Williams, J. R. (1995). Chapter 25: The EPIC model. Computer models of watershed hydrology, In V. P. Singh (ed.), Water Resources Publications, pp. 909-1000