DOI QR코드

DOI QR Code

Cloning and characterization of phosphomannose isomerase from sphingomonas chungbukensis DJ77

  • Tran, Sinh Thi (Deparments of Biochemistry, Chungbuk National University) ;
  • Le, Dung Tien (Deparments of Biochemistry, Chungbuk National University) ;
  • Kim, Young-Chang (Deparments of Microbiology, Chungbuk National University) ;
  • Shin, Malshik (Department of Food and Nutrition, Chonnam National University) ;
  • Choi, Jung-Do (Deparments of Biochemistry, Chungbuk National University)
  • Published : 2009.08.31

Abstract

Phosphomannose isomerase (PMI) catalyzes the interconversion of fructose-6-phosphate and mannose-6-phosphate in the extracellular polysaccharide (EPS) synthesis pathway. The gene encoding PMI in Sphingomonas chungbukensis DJ77 was cloned and expressed in E. coli. The pmi gene is 1,410 nucleotides long and the deduced amino acid sequence shares high homology with other bifunctional proteins that possess both PMI and GDP-mannose pyrophosphorylase (GMP) activities. The sequence analysis of PMI revealed two domains with three conserved motifs: a GMP domain at the N-terminus and a PMI domain at the C-terminus. Enzyme assays using the PMI protein confirmed its bifunctional activity. Both activities required divalent metal ions such as $Co^{2+}$, $Ca^{2+}$, $Mg^{2+}$, $Ni^{2+}$ or $Zn^{2+}$. Of these ions, $Co^{2+}$ was found to be the most effective activator of PMI. GDP-D-mannose was found to inhibit the PMI activity, suggesting feedback regulation of this pathway.

Keywords

References

  1. Kim, S. J., Chun, J. S., Bae, K. S. and Kim, Y. C. (2000) Polyphasic assignment of an aromatic-degrading Pseudomonas sp., strain DJ77, in the genus Sphingomonas as Sphingomonas chungbukensis sp. nov. Int. J. Syst. Evol. Microbiol. 50, 1641-1647 https://doi.org/10.1099/00207713-50-4-1641
  2. Roberts, I. S. (1996) The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu. Rev. Microbiol. 50, 285-315 https://doi.org/10.1146/annurev.micro.50.1.285
  3. Fialho, A. M., Moreira, L. M., Granja, A. T., Popescu, A. O., Hoffmann, K. and Sá-Correia, I. (2008) Occurrence, production, and application of gellan: current state and perspectives. Appl. Microbiol. Biotechnol. 79, 889-900 https://doi.org/10.1007/s00253-008-1496-0
  4. Yoon, S. S., Park, S. H., Kim, T. C., Shin, M., Chong, C. K. and Choi, J. D. (2008) Cloning and characterization of phosphoglucomutase and phosphomannomutase derived from Sphingomonas chungbukensis DJ77. J. Biochem. (Tokyo) 144, 507-512 https://doi.org/10.1093/jb/mvn094
  5. Yoon, M. Y., Lee, K. J., Park, H. C., Park, S. H., Kim, S. G., Kim, S. K. and Choi, J. D. (2009) Cloning, expression, and characterization of UDP-glucose pyrophosphorylase from Sphingomonas chungbukensis DJ77. Bull. Korean Chem. Soc. 30, 1360-1364 https://doi.org/10.5012/bkcs.2009.30.6.1360
  6. Yoon, M. Y., Park, H. Y., Park, H. C., Park, S. H., Kim, S. K., Kim, Y. C., Shin, M. and Choi, J. D. (2009) Cloning and characterization of UDP-glucose dehydrogenase from Sphingomonas chungbukensis DJ77. Bull. Korean Chem. Soc. 30, 1547-1552 https://doi.org/10.5012/bkcs.2009.30.7.1547
  7. Tran, S. T., Le, D. T., Kim, Y. C., Shin, M. and Choi, J. D. (2009) Cloning and characterization of phosphoglucose isomerase from Sphingomonas chungbukensis DJ77. BMB Reports 42, 172-177
  8. Koplin, R., Arnold, W., Hotte, B., Simon, R., Wang, G. and Puhler, A. (1992) Genetics of xanthan production in Xanthomonas campestris: the xanA and xanB genes are involved in UDP-glucose and GDP-mannose biosynthesis. J. Bacteriol. 174, 191-199 https://doi.org/10.1128/jb.174.1.191-199.1992
  9. Shinabarger, D., Berry, A., May, T. B., Rothmel, R., Fialho, A. and Chakrabarty, A. M. (1991) Purification and characterization of phosphomannose isomerase-guanosine diphospho- D-mannose pyrophosphorylase: a bifunctional enzyme in the alginate biosynthetic pathway of Pseudomonas aeruginosa. J. Biol. Chem. 266, 2080-2088
  10. Griffin, A. M., Poelwijk, E. S., Morris, V. J. and Gasson, M. J. (1997) Cloning of the aceF gene encoding the phosphomannose isomerase and GDP-mannose pyrophosphorylase activities involved in acetan biosynthesis in Acetobacter xylinum. FEMS. Microbiol. Lett. 154, 389-396 https://doi.org/10.1111/j.1574-6968.1997.tb12672.x
  11. Jensen, S. O. and Reeves, P. R. (1998) Domain organization in phosphomannose isomerases (types I and II). Biochim. Biophys. Acta. 1382, 5-7 https://doi.org/10.1016/S0167-4838(97)00122-2
  12. Meng, M., Chane, T. L., Sun, Y. J. and Hsiao, C. D. (1999) Probing the location and function of the conserved histidine residue of phosphoglucose isomerase by using an active site directed inhibitor N-bromoacetylethanolamine phosphate. Protein. Sci. 8, 24838-24843
  13. Ryong, K. H., Um, H. J., Oh, J. S., Cho, W. S. and Kim, Y. C. (2003) Gene list of Sphingomonas chungbukensis DJ77. Genome. Informatics. 14, 659-660
  14. May, T. B., Shinabarger, D., Boyd, A. and Chakrabarty, A. M. (1994) Identification of amino acid residues involved in the activity of phosphomannose isomerase-guanosine 5'-diphospho-D-mannose pyrophosphorylase. A bifunctional enzyme in the alginate biosynthetic pathway of Pseudomonas aeruginosa. J. Biol. Chem. 269, 4872-4877
  15. Wu, B., Zhang, Y., Zheng. R., Guo, C. and Wang, P. G. (2002) Bifunctional phosphomannose isomerase/GDP-Dmannose pyrophosphorylase is the point of control for GDP-D-mannose biosynthesis in Helicobacter pylori. FEBS Lett. 519, 87-92 https://doi.org/10.1016/S0014-5793(02)02717-5
  16. Hall, T. A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic. Acids. Symposium. Series. 41, 95-98
  17. Gill, J. F., Deretic, V. and Chakrabarty, A. M. (1986) Over production and assay of Pseudomonas aeruginosa phosphomannose isomerase. J. Bacteriol. 167, 611-615 https://doi.org/10.1128/jb.167.2.611-615.1986
  18. Sa-Correia, I., Darzins, A., Wang, S. K., Berry, A. and Chakrabarty, A. M. (1987) Alginate biosynthetic enzymes in mucoid and nonmucoid Pseudomonas aeruginosa: overproduction of phosphomannose isomerase, phosphomannomutase, and GDP-mannose pyrophosphorylase by overexpression of the phosphomannose isomerase (pmi) gene. J. Bacteriol. 169, 3224-3231 https://doi.org/10.1128/jb.169.7.3224-3231.1987

Cited by

  1. Monitoring Bacterial Twitter: Does Quorum Sensing Determine the Behavior of Water and Wastewater Treatment Biofilms? vol.46, pp.4, 2012, https://doi.org/10.1021/es203933h
  2. Reconstruction and analysis of the genome-scale metabolic model of Lactobacillus casei LC2W vol.554, pp.2, 2015, https://doi.org/10.1016/j.gene.2014.10.034
  3. DoGMP1 from Dendrobium officinale contributes to mannose content of water-soluble polysaccharides and plays a role in salt stress response vol.7, 2017, https://doi.org/10.1038/srep41010