References
- Triezenberg, S. J. (1995) Structure and function of transcriptional activation domains. Curr. Opin. Genet. Dev. 5, 190-196 https://doi.org/10.1016/0959-437X(95)80007-7
- Tjian, R. and Maniatis, T. (1994) Transcriptional activation: a complex puzzle with few easy pieces. Cell 77, 5-8 https://doi.org/10.1016/0092-8674(94)90227-5
- Pugh, B. F. (1996) Mechanisms of transcription complex assembly. Curr. Opin. Cell. Biol. 8, 303-311 https://doi.org/10.1016/S0955-0674(96)80002-0
- Lee, H., Mok, K. H., Muhandiram, R., Park, K. H., Suk, J. E., Kim, D. H., Chang, J., Sung, Y. C., Choi, K. Y. and Han, K. H. (2000) Local structural elements in the mostly unstructured transcriptional activation domain of human p53. J. Biol. Chem. 275, 29426-29432 https://doi.org/10.1074/jbc.M003107200
- Sigler, P. B. (1988) Transcriptional activation. Acid blobs and negative noodles. Nature 333, 210-212 https://doi.org/10.1038/333210a0
- Hahn, S. (1993) Structure(?) and function of acidic transcription activators. Cell 72, 481-483 https://doi.org/10.1016/0092-8674(93)90064-W
- Cho, H. S., Liu, C. W., Damberger, F. F., Pelton, J. G., Nelson, H. C. and Wemmer, D. E. (1996) Yeast heat shock transcription factor N-terminal activation domains are unstructured as probed by heteronuclear NMR spectroscopy. Protein Sci. 5, 262-269
- Campbell, M. E., Palfreyman, J. W. and Preston, C. M. (1984) Identification of herpes simplex virus DNA sequences which encode a trans-acting polypeptide responsible for stimulation of immediate early transcription. J. Mol. Biol. 180, 1-19 https://doi.org/10.1016/0022-2836(84)90427-3
- Sadowski, I., Ma, J., Triezenberg, S. and Ptashne, M. (1988) GAL4-VP16 is an unusually potent transcriptional activator. Nature 335, 563-564 https://doi.org/10.1038/335563a0
- Regier, J. L., Shen, F. and Triezenberg, S. J. (1993) Pattern of aromatic and hydrophobic amino acids critical for one of two subdomains of the VP16 transcriptional activator. Proc. Natl. Acad. Sci. U.S.A. 90, 883-887 https://doi.org/10.1073/pnas.90.3.883
- Sullivan, S. M., Horn, P. J., Olson, V. A., Koop, A. H., Niu, W., Ebright, R. H. and Triezenberg, S. J. (1998) Mutational analysis of a transcriptional activation region of the VP16 protein of herpes simplex virus. Nucleic. Acids. Res. 26, 4487-4496 https://doi.org/10.1093/nar/26.19.4487
- Shen, F., Triezenberg, S. J., Hensley, P., Porter, D. and Knutson, J. R. (1996) Transcriptional activation domain of the herpesvirus protein VP16 becomes conformationally constrained upon interaction with basal transcription factors. J. Biol. Chem. 271, 4827-4837 https://doi.org/10.1074/jbc.271.9.4827
- Kobayashi, N., Boyer, T. G. and Berk, A. J. (1995) A class of activation domains interacts directly with TFIIA and stimulates TFIIA-TFIID-promoter complex assembly. Mol. Cell. Biol. 15, 6465-6473
- Kobayashi, N., Horn, P. J., Sullivan, S. M., Triezenberg, S. J., Boyer, T. G. and Berk, A. J. (1998) DA-complex assembly activity required for VP16C transcriptional activation. Mol. Cell. Biol. 18, 4023-4031
- Hardy, S., Brand, M., Mittler, G., Yanagisawa, J., Kato, S., Meisterernst, M. and Tora, L. (2002) TATA-binding protein- free TAF-containing complex (TFTC) and p300 are both required for efficient transcriptional activation. J. Biol. Chem. 277, 32875-32882 https://doi.org/10.1074/jbc.M205860200
- Ikeda, K., Stuehler, T. and Meisterernst, M. (2002) The H1 and H2 regions of the activation domain of herpes simplex virion protein 16 stimulate transcription through distinct molecular mechanisms. Genes Cells 7, 49-58 https://doi.org/10.1046/j.1356-9597.2001.00492.x
- Kraus, W. L., Manning, E. T. and Kadonaga, J. T. (1999) Biochemical analysis of distinct activation functions in p300 that enhance transcription initiation with chromatin templates. Mol. Cell. Biol. 19, 8123-8135
- Kundu, T. K., Palhan, V. B., Wang, Z., An, W., Cole, P. A. and Roeder, R. G. (2000) Activator-dependent transcription from chromatin in vitro involving targeted histone acetylation by p300. Mol. Cell 6, 551-561 https://doi.org/10.1016/S1097-2765(00)00054-X
- Uesugi, M., Nyanguile, O., Lu, H., Levine, A. J. and Verdine, G. L. (1997) Induced alpha helix in the VP16 activation domain upon binding to a human TAF. Science 277, 1310-1313 https://doi.org/10.1126/science.277.5330.1310
- Klemm, R. D., Goodrich, J. A., Zhou, S. and Tjian, R. (1995) Molecular cloning and expression of the 32-kDa subunit of human TFIID reveals interactions with VP16 and TFIIB that mediate transcriptional activation. Proc. Natl. Acad. Sci. U.S.A. 92, 5788-5792 https://doi.org/10.1073/pnas.92.13.5788
- Burley, S. K. and Roeder, R. G. (1996) Biochemistry and structural biology of transcription factor IID (TFIID). Annu. Rev. Biochem. 65, 769-799 https://doi.org/10.1146/annurev.bi.65.070196.004005
- Choi, Y., Asada, S. and Uesugi, M. (2000) Divergent hTAFII31-binding motifs hidden in activation domains. J. Biol. Chem. 275, 15912-15916 https://doi.org/10.1074/jbc.275.21.15912
- Langlois, C., Mas, C., Di Lello, P., Jenkins, L. M., Legault, P. and Omichinski, J. G. (2008) NMR structure of the complex between the Tfb1 subunit of TFIIH and the activation domain of VP16: structural similarities between VP16 and p53. J. Am. Chem. Soc. 130, 10596-10604 https://doi.org/10.1021/ja800975h
- Jonker, H. R., Wechselberger, R. W., Boelens, R., Folkers, G. E. and Kaptein, R. (2005) Structural properties of the promiscuous VP16 activation domain. Biochemistry 44, 827-839 https://doi.org/10.1021/bi0482912
- Chi, S. W., Lee, S. H., Kim, D. H., Ahn, M. J., Kim, J. S., Woo, J. Y., Torizawa, T., Kainosho, M. and Han, K. H. (2005) Structural details on mdm2-p53 interaction. J. Biol. Chem. 280, 38795-38802 https://doi.org/10.1074/jbc.M508578200
- Bochkareva, E., Kaustov, L., Ayed, A., Yi, G. S., Lu, Y., Pineda-Lucena, A., Liao, J. C., Okorokov, A. L., Milner, J., Arrowsmith, C. H. and Bochkarev, A. (2005) Singlestranded DNA mimicry in the p53 transactivation domain interaction with replication protein A. Proc. Natl. Acad. Sci. U.S.A. 102, 15412-15417 https://doi.org/10.1073/pnas.0504614102
- Di Lello, P., Jenkins, L. M., Jones, T. N., Nguyen, B. D., Hara, T., Yamaguchi, H., Dikeakos, J. D., Appella, E., Legault, P. and Omichinski, J. G. (2006) Structure of the Tfb1/p53 complex: Insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53. Mol. Cell 22, 731-740 https://doi.org/10.1016/j.molcel.2006.05.007
- Lee, S. H., Park, K. H., Kim, D. H., Choung, D. H., Suk, J. E., Kim, D. H., Chang, J., Sung, Y. C., Choi, K. Y. and Han, K. H. (2001) Structural origin for the transcriptional activity of human p53. J. Biochem. Mol. Biol. 34, 73-79
- O'Hare, P. and Williams, G. (1992) Structural studies of the acidic transactivation domain of the Vmw65 protein of herpes simplex virus using 1H NMR. Biochemistry 31, 4150-4156 https://doi.org/10.1021/bi00131a035
- Chi, S. W., Kim, D. H., Lee, S. H., Chang, I. and Han, K. H. (2007) Pre-structured motifs in the natively unstructured preS1 surface antigen of hepatitis B virus. Protein Sci. 16, 2108-2117 https://doi.org/10.1110/ps.072983507
- Maeng, C. Y., Oh, M. S., Park, I. H. and Hong, H. J. (2001) Purification and structural analysis of the hepatitis B virus preS1 expressed from Escherichia coli. Biochem. Biophys. Res. Commun. 282, 787-792 https://doi.org/10.1006/bbrc.2001.4641
- Kim, D. H., Ni, Y., Lee, S. H., Urban, S. and Han, K. H. (2008) An anti-vial peptide derived from the preS1 surface protein of hepatitis B virus. BMB Rep. 41, 640-644 https://doi.org/10.5483/BMBRep.2008.41.9.640
- Kussie, P. H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A. J. and Pavletich, N. P. (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948-953 https://doi.org/10.1126/science.274.5289.948
- Demarest, S. J., Martinez-Yamout, M., Chung, J. Chen, H., Xu, W., Dyson, H. J., Evans, R. M. and Wright, P. E. (2002) Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature 415, 549-553 https://doi.org/10.1038/415549a
- Sayers, E. W., Gerstner, R. B., Draper, D. E. and Torchia, D. A. (2000) Structural preordering in the N-terminal region of ribosomal protein S4 revealed by heteronuclear NMR spectroscopy. Biochemistry 39, 13602-13613 https://doi.org/10.1021/bi0013391
- Ramelot, T. A., Gentile, L. N. and Nicholson, L. K. (2000) Transient structure of the amyloid precursor protein cytoplasmic tail indicates preordering of structure for binding to cytosolic factors. Biochemistry 39, 2714-2725 https://doi.org/10.1021/bi992580m
- Zitzewitz, J. A., Ibarra-Molero, B., Fishel, D. R., Terry, K. L. and Matthews, C. R. (2000) Preformed secondary structure drives the association reaction of GCN4-p1, a model coiled-coil system. J. Mol. Biol. 296, 1105-1116 https://doi.org/10.1006/jmbi.2000.3507
- Bienkiewicz, E. A., Adkins, J. N. and Lumb, K. J. (2002) Functional consequences of preorganized helical structure in the intrinsically disordered cell-cycle inhibitor p27 (Kip1). Biochemistry 41, 752-759 https://doi.org/10.1021/bi015763t
- Parker, D., Rivera, M., Zor, T., Henrion-Caude, A., Radhakrishnan, I., Kumar, A., Shapiro, L. H., Wright, P. E., Montminy, M. and Brindle, P. K. (1999) Role of secondary structure in discrimination between constitutive and inducible activators. Mol. Cell. Biol. 19, 5601-5607
- Daughdrill, G. W., Hanely, L. J. and Dahlquist, F. W. (1998) The C-terminal half of the anti-sigma factor FlgM contains a dynamic equilibrium solution structure favoring helical conformations. Biochemistry 37, 1076-1082 https://doi.org/10.1021/bi971952t
- Domanski, M., Hertzog, M., Coutant, J., Gutsche-Perelroizen, I., Bontems, F., Carlier, M. F., Guittet, E. and van Heijenoort, C. (2004) Coupling of folding and binding of thymosin beta4 upon interaction with monomeric actin monitored by nuclear magnetic resonance. J. Biol. Chem. 279, 23637-23645 https://doi.org/10.1074/jbc.M311413200
- Radhakrishnan, I., Perez-Alvarado, G. C., Parker, D., Dyson, H. J., Montminy, M. R. and Wright, P. E. (1997) Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 91, 741-752 https://doi.org/10.1016/S0092-8674(00)80463-8
- Chang, J. F., Phillips, K., Lundback, T., Gstaiger, M., Ladbury, J. E. and Luisi, B. (1999) Oct-1 POU and octamer DNA co-operate to recognise the Bob-1 transcription co-activator via induced folding. J. Mol. Biol. 288, 941-952 https://doi.org/10.1006/jmbi.1999.2711
- Kim, A. S., Kakalis, L. T., Abdul-Manan, N., Liu, G. A. and Rosen, M. K. (2000) Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature 404, 151-158 https://doi.org/10.1038/35004513
- Dames, S. A., Martinez-Yamout, M., De Guzman, R. N., Dyson, H. J. and Wright, P. E. (2002) Structural basis for Hif-1 alpha /CBP recognition in the cellular hypoxic response. Proc. Natl. Acad. Sci. U.S.A. 99, 5271-5276 https://doi.org/10.1073/pnas.082121399
- Dyson, H. J. and Wright, P. E. (2002) Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol. 12, 54-60 https://doi.org/10.1016/S0959-440X(02)00289-0
- Mucsi, Z., Hudecz, F., Hollosi, M., Tompa, P. and Friedrich, P. (2003) Binding-induced folding transitions in calpastatin subdomains A and C. Protein Sci. 12, 2327-2336 https://doi.org/10.1110/ps.03138803
- De Guzman, R. N., Martinez-Yamout, M. A., Dyson, H. J. and Wright, P. E. (2004) Interaction of the TAZ1 domain of the CREB-binding protein with the activation domain of CITED2: regulation by competition between intrinsically unstructured ligands for non-identical binding sites. J. Biol. Chem. 279, 3042-3049 https://doi.org/10.1074/jbc.M310348200
- Dyson, H. J. and Wright, P. E. (2005) Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell. Biol. 6, 197-208 https://doi.org/10.1038/nrm1589
- Sugase, K., Dyson, H. J. and Wright. P. E. (2007) Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447, 1021-1025 https://doi.org/10.1038/nature05858
- Radhakrishnan, I., Perez-Alvarado, G. C., Dyson, H. J. and Wright, P. E. (1998) Conformational preferences in the Ser133-phosphorylated and non phosphorylated forms of the kinase inducible transactivation domain of CREB. FEBS Lett. 430, 317-322 https://doi.org/10.1016/S0014-5793(98)00680-2
- Wishart, D. S. and Sykes, B. D. (1994) Chemical shifts as a tool for structure determination. Methods Enzymol. 239, 363-392 https://doi.org/10.1016/S0076-6879(94)39014-2
Cited by
- The alphabet of intrinsic disorder vol.1, pp.1, 2013, https://doi.org/10.4161/idp.24360
- Mitoxantrone Binds to Nopp140, an Intrinsically Unstructured Protein, and Modulate its Interaction with Protein Kinase CK2 vol.33, pp.6, 2012, https://doi.org/10.5012/bkcs.2012.33.6.2005
- The Mechanism of p53 Rescue by SUSP4 vol.129, pp.5, 2017, https://doi.org/10.1002/ange.201607819
- Expanding the proteome: disordered and alternatively folded proteins vol.44, pp.04, 2011, https://doi.org/10.1017/S0033583511000060
- Contribution of proline to the pre-structuring tendency of transient helical secondary structure elements in intrinsically disordered proteins vol.1840, pp.3, 2014, https://doi.org/10.1016/j.bbagen.2013.10.042
- Intrinsically disordered fold of a PIAS1-binding domain of CP2b vol.18, pp.1, 2014, https://doi.org/10.6564/JKMRS.2014.18.1.030
- Structure and VP16 binding of the Mediator Med25 activator interaction domain vol.18, pp.4, 2011, https://doi.org/10.1038/nsmb.1997
- A Small Ubiquitin-related Modifier-interacting Motif Functions as the Transcriptional Activation Domain of Krüppel-like Factor 4 vol.285, pp.36, 2010, https://doi.org/10.1074/jbc.M110.101717
- A novel TBP-TAF complex on RNA Polymerase II-transcribed snRNA genes vol.3, pp.2, 2012, https://doi.org/10.4161/trns.19783
- Transient-state Kinetic Analysis of Transcriptional Activator·DNA Complexes Interacting with a Key Coactivator vol.286, pp.18, 2011, https://doi.org/10.1074/jbc.M110.207589
- The Mechanism of p53 Rescue by SUSP4 vol.56, pp.5, 2017, https://doi.org/10.1002/anie.201607819
- Transient Secondary Structures as General Target-Binding Motifs in Intrinsically Disordered Proteins vol.19, pp.11, 2018, https://doi.org/10.3390/ijms19113614