DOI QR코드

DOI QR Code

Targeted chiral lipidomics analysis of bioactive eicosanoid lipids in cellular systems

  • Lee, Seon-Hwa (Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University) ;
  • Blair, Ian A. (Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine)
  • Published : 2009.07.31

Abstract

We have developed a targeted lipidomics approach that makes it possible to directly analyze chiral eicosanoid lipids generated in cellular systems. The eicosanoids, including prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs) and alcohols (HETEs), have been implicated as potent lipid mediators of various biological processes. Enzymatic formations of eicosanoids are regioselective and enantioselective, whereas reactive oxygen species (ROS)-mediated formation proceeds with no stereo-selectivity. To distinguish between enzymatic and non-enzymatic pathways of eicosanoid formation, it is necessary to resolve enantiomeric forms as well as regioisomers. High sensitivity is also required to analyze the eicosanoid lipids that are usually present as trace amounts (pM level) in biological fluids. A discovery of liquid chromatography-electron capture atmospheric pressure chemical ionization/mass spectrometry (LC-ECAPCI/MS) allows us to couple normal phase chiral chromatography without loss of sensitivity. Analytical specificity was obtained by the use of collision-induced dissociation (CID) and tandem MS (MS/MS). With combination of stable isotope dilution methodology, complex mixtures of regioisomeric and enantiomeric eicosanoids have been resolved and quantified in biological samples with high sensitivity and specificity. Targeted chiral lipidomics profiles of bioactive eicosanoid lipids obtained from various cell systems and their biological implications have been discussed.

Keywords

References

  1. Lagarde, M., Geloen, A., Record, M., Vance, D. and Spener, F. (2003) Lipidomics is emerging. Biochim. Biophys. Acta 1634, 61 https://doi.org/10.1016/j.bbalip.2003.11.002
  2. Han, X. and Gross, R. W. (2003) Global analyses of cellular lipidomes directly from crude extracts of biological samples by electrospray ionization mass spectrometry: a bridge to lipidomics. J. Lipid Res. 44, 1071-1079 https://doi.org/10.1194/jlr.R300004-JLR200
  3. Lee, S. H., Williams, M. V., DuBois, R. N. and Blair, I. A. (2003) Targeted lipidomics using electron capture atmospheric pressure chemical ionization mass spectrometry. Rapid Comm. Mass Spec. 17, 2168-2176 https://doi.org/10.1002/rcm.1170
  4. Nicholson, J. K. and Wilson, I. D. (2003) Opinion: Understanding 'global' systems biology: metabonomics and the continuum of metabolism. Nat. Rev. Drug Discov. 2, 668-676 https://doi.org/10.1038/nrd1157
  5. Kitano, H. (2002) Systems biology: a brief overview. Science 295, 1662-1664 https://doi.org/10.1126/science.1069492
  6. Hood, L. and Galas, D. (2003) The digital code of DNA. Nature 421, 444-448 https://doi.org/10.1038/nature01410
  7. Fenn, J. B., Mann, M., Meng, C. K. Wong, S. F. and Whitehouse, C. M. (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64-71 https://doi.org/10.1126/science.2675315
  8. Dzidic, I., Carroll, D. I., Stillwell, R. N. and Horning, E. C. (1975) Atmospheric pressure ionization (API) mass spectrometry: formation of phenoxide ions from chlorinated aromatic compounds. Anal. Chem. 47, 1308-1312 https://doi.org/10.1021/ac60358a077
  9. Singh, G., Xu, K., Gutierrez, A. and Blair, I. A. (2000) Liquid chromatography/electron capture atmospheric pressure chemical ionization/mass spectrometry: analysis of pentafluorobenzyl derivatives of biomolecules and drugs in the attomole range. Anal. Chem. 72, 3007-3013 https://doi.org/10.1021/ac000374a
  10. Carroll, D. I., Dzidic, I., Stillwell, R. N., Haegele, K. D. and Horning, E. C. (1975) Atmospheric pressure ionization mass spectrometry: corona discharge ion source for use in liquid chromatograph-mass spectrometer-computer analytical system. Anal. Chem. 47, 2369-2373 https://doi.org/10.1021/ac60364a031
  11. Hunt, D. F., Stafford, G. C., Crow, F. W. and Russell, J. W. (1976). Pulsed positive negative-Ion chemical ionization mass-spectrometry. Anal. Chem. 48, 2098-2105 https://doi.org/10.1021/ac50008a014
  12. Lee, S. H., Williams, M. V. and Blair, I. A. (2005). Targeted chiral lipidomics analysis. Prostaglandins Other Lipid Mediat. 77, 141-157 https://doi.org/10.1016/j.prostaglandins.2004.01.009
  13. Lee, S. H. and Blair, I. A. (2007) Targeted chiral lipidomics analysis by liquid chromatography electron capture atmospheric pressure chemical ionization mass spectrometry (LC-ECAPCI/MS). Methods Enzymol. 433, 159-174 https://doi.org/10.1016/S0076-6879(07)33009-7
  14. Mesaros, C., Lee, S. H. and Blair, I. A. (2009) Targeted quantitative analysis of eicosanoid lipids in biological samples using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. Mar 17. [Epub ahead of print]; doi:10.1016/j.jchromb.2009.03.011
  15. Stafforini, D. M., Sheller, J. R., Blackwell, T. S., Sapirstein, A., Yull, F. E., McIntyre, T. M., Bonventre, J. V., Prescott, S. M. and Roberts, L. J. (2006) Release of free F2-isoprostanes from esterified phospholipids is catalyzed by intracellular and plasma platelet-activating factor acetylhydrolases. J. Biol. Chem. 281, 4616-4623 https://doi.org/10.1074/jbc.M507340200
  16. Kudo, I. and Murakami, M. Phospholipase A2 enzymes. (2002) Prostaglandins Other Lipid Mediat. 68-69, 3-58 https://doi.org/10.1016/S0090-6980(02)00020-5
  17. Funk, C. D. (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871-1875 https://doi.org/10.1126/science.294.5548.1871
  18. Shimizu, T. (2008) Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu. Rev. Pharmacol. Toxicol. 49, 23-50
  19. Iniguez, M. A., Cacheiro-Llaguno, C., Cuesta, N. Diaz- Munoz, M. and Fresno, M. (2008) Prostanoid function and cardiovascular disease. Arch. Physiol. Biochem. 114, 201-209 https://doi.org/10.1080/13813450802180882
  20. Wang, M. T., Honn, K. V. and Nie, D. (2007) Cyclooxygenases, prostanoids, and tumor progression. Cancer Metastasis Rev. 26, 525-534 https://doi.org/10.1007/s10555-007-9096-5
  21. Peters-Golden, M. and Henderson, Jr., W. R. (2007) Leukotrienes. N. Engl. J. Med. 357, 1841-1854 https://doi.org/10.1056/NEJMra071371
  22. Natarajan, R. and Reddy, M. A. (2003) HETEs/EETs in renal glomerular and epithelial cell functions. Curr. Opin. Pharmacol. 3, 198-203 https://doi.org/10.1016/S1471-4892(03)00015-8
  23. Miyata, N. and Roman, R. J. (2005) Role of 20-hydroxyeicosatetraenoic acid (20-HETE) in vascular system. J. Smooth Muscle Res. 41, 175-193 https://doi.org/10.1540/jsmr.41.175
  24. Cracowski, J. L. and Durand, T. (2006) Cardiovascular pharmacology and physiology of the isoprostanes. Fundam. Clin. Pharmacol. 20, 417-427 https://doi.org/10.1111/j.1472-8206.2006.00435.x
  25. Pratico, D., Rokach, J., Lawson, J. and FitzGerald, G. A. (2004) F2-isoprostanes as indices of lipid peroxidation in inflammatory diseases. Chem. Phys. Lipids 128, 165-171 https://doi.org/10.1016/j.chemphyslip.2003.09.012
  26. Manevich, Y. and Fisher, A. B. (2005) Peroxiredoxin 6, a 1-Cys peroxiredoxin, functions in antioxidant defense and lung phospholipid metabolism. Free Radic. Biol. Med. 38, 1422-1432 https://doi.org/10.1016/j.freeradbiomed.2005.02.011
  27. K$\ddot{u}$hn, H. and Borchert, A. (2002) Regulation of enzymatic lipid peroxidation: the interplay of peroxidizing and peroxide reducing enzymes. Free Radic. Biol. Med. 33, 154-172 https://doi.org/10.1016/S0891-5849(02)00855-9
  28. Chaitidis, P., Schewe, T., Sutherland, M., K$\ddot{u}$hn, H. and Nigam, S. (1998) 15-Lipoxygenation of phospholipids may precede the sn-2 cleavage by phospholipases A2: reaction specificities of secretory and cytosolic phospholipases A2 towards native and 15-lipoxygenated arachidonoyl phospholipids. FEBS Lett. 434, 437-441 https://doi.org/10.1016/S0014-5793(98)01024-2
  29. Lee, S. H., Rangiah, K., Williams, M. V., Wehr, A. Y., DuBois, R. N. and Blair, I. A. (2007) Cyclooxygenase-2- mediated metabolism of arachidonic acid to 15-oxo-eicosatetraenoic acid by rat intestinal epithelial cells. Chem. Res. Toxicol. 20, 1665-1675 https://doi.org/10.1021/tx700130p
  30. Lee, S. H., Williams, M. V., DuBois, R. N. and Blair, I. A. (2005) Cyclooxygenase-2-mediated DNA damage. J. Biol. Chem. 280, 28337-28346 https://doi.org/10.1074/jbc.M504178200
  31. Jian, W., Lee, S. H., Arora, J. S., Silva Elipe, M. V. and Blair, I. A. (2005) Unexpected formation of etheno-2'-deoxyguanosine adducts from 5(S)-hydroperoxyeicosatetraenoic acid: evidence for a bis-hydroperoxide intermediate. Chem. Res. Toxicol. 18, 599-610 https://doi.org/10.1021/tx049693d
  32. Blair, I. A. (2008) DNA adducts with lipid peroxidation products. J. Biol. Chem. 283, 15545-15549 https://doi.org/10.1074/jbc.R700051200
  33. Zhu, P., Lee, S. H., Wehrli, S. and Blair, I. A. (2006) Characterization of a lipid hydroperoxide-derived RNA adduct in rat intestinal epithelial cells. Chem. Res. Toxicol. 19, 809-817 https://doi.org/10.1021/tx0600189
  34. Oe, T., Arora, J. S., Lee, S. H. and Blair, I. A. (2003) A novel lipid hydroperoxide-derived cyclic covalent modification to histone H4. J. Biol. Chem. 278, 42098-42105 https://doi.org/10.1074/jbc.M308167200
  35. Lee, S. H., Goto, T. and Oe, T. (2008) A novel 4-oxo-2(E)- nonenal-derived modification to angiotensin II: oxidative decarboxylation of N-terminal aspartic acid. Chem. Res. Toxicol. 21, 2237-2244 https://doi.org/10.1021/tx800316v
  36. Porter, N. A., Caldwell, S. E. and Mills, K. A. (1995) Mechanisms of free radical oxidation of unsaturated lipids. Lipids 30, 277-290 https://doi.org/10.1007/BF02536034
  37. Jones, R., del-Alvarez, L. A., Alvarez, O. R., Broaddus, R., and Das, S. (2003) Arachidonic acid and colorectal carcinogenesis. Mol. Cell. Biochem. 253, 141-149 https://doi.org/10.1023/A:1026060426569
  38. Wang, D. and Dubois, R. N. (2004) Cyclooxygenase-2: a potential target in breast cancer. Semin. Oncol. 31, 64-73
  39. Lee, S. H. and Blair, I. A. (2000) Characterization of 4- oxo-2-nonenal as a novel product of lipid peroxidation. Chem. Res. Toxicol. 13, 698-702 https://doi.org/10.1021/tx000101a
  40. Lee, S. H., Oe, T. and Blair, I. A. (2001) Vitamin C-induced decomposition of lipid hydroperoxides to endogenous genotoxins. Science 292, 2083-2086 https://doi.org/10.1126/science.1059501
  41. Williams, M. V., Lee, S. H., Pollack, M. and Blair, I. A. (2006) Endogenous lipid hydroperoxide-mediated DNA-adduct formation in min mice. J. Biol. Chem. 281, 10127-10133 https://doi.org/10.1074/jbc.M600178200
  42. Rindgen, D., Nakajima, M., Wehrli, S., Xu, K. and Blair, I. A. (1999) Covalent modifications to 2'-deoxyguanosine by 4-oxo-2-nonenal a novel product of lipid peroxidation. Chem. Res. Toxicol. 12, 1195-1204 https://doi.org/10.1021/tx990034o
  43. Lee, S. H., Rindgen, D., Bible, R. A., Hajdu, E. and Blair, I. A. (2000) Characterization of 2'-deoxyadenosine adducts derived from 4-oxo-2-nonenal, a novel product of lipid peroxidation. Chem. Res. Toxicol. 13, 565-574 https://doi.org/10.1021/tx000057z
  44. Pollack, M., Oe, T., Lee, S. H., Silva Elipe, M. V., Arison, B. H. and Blair, I. A. (2003) Characterization of 2'-deoxycytidine adducts derived from 4-oxo-2-nonenal, a novel lipid peroxidation product. Chem. Res. Toxicol. 16, 893-900 https://doi.org/10.1021/tx030009p
  45. Schneider, C. and Brash, A. R. (2000) Stereospecificity of hydrogen abstraction in the conversion of arachidonic acid to 15R-HETE by aspirin-treated cyclooxygenase-2. J. Biol. Chem. 275, 4743-4746 https://doi.org/10.1074/jbc.275.7.4743
  46. O'Neill, G. P., Mancini, J. A., Kargman, S., Yergey, J., Kwan, M. Y., Falgueyret, J. P., Abramovitz, M., Kennedy, B. P., Ouellet, M. and Cromlish, W. (1994) Overexpression of human prostaglandin G/H synthase-1 and -2 by recombinant vaccinia virus: inhibition by nonsteroidal anti-inflammatory drugs and biosynthesis of 15-hydroxyeicosatetraenoic acid. Mol. Pharmacol. 45, 245-254
  47. Holtzman, M. J., Turk, J. and Shornick, L. P. (1992) Identification of a pharmacologically distinct prostaglandin H synthase in cultured epithelial cells. J. Biol. Chem. 267, 21438-21445
  48. Lotzer, K., Funk, C. D. and Habenicht, A. J. (2005) The 5-lipoxygenase pathway in arterial wall biology and atherosclerosis. Biochim. Biophys. Acta 1736, 30-37
  49. Woods, J. W., Evans, J. F., Ethier, D., Scott, S., Vickers, P. J., Hearn, L., Heibein, J. A., Charleson, S. and Singer, I. I. (1993) 5-Lipoxygenase and 5-lipoxygenase-activating protein are localized in the nuclear envelope of activated human leukocytes. J. Exp. Med. 178, 1935-1946 https://doi.org/10.1084/jem.178.6.1935
  50. Wymann, M. P. and Schneiter, R. (2008) Lipid signalling in disease. Nat. Rev. Mol. Cell Biol. 9, 162-176 https://doi.org/10.1038/nrm2335
  51. Jian, W., Lee, S. H., Williams, M. V. and Blair, I. A. (2009) 5-Lipoxygenase-mediated Endogenous DNA Damage. J. Biol. Chem. 284, 16799-16807 https://doi.org/10.1074/jbc.M109.011841
  52. Gupta, S., Srivastava, M., Ahmad, N., Sakamoto, K., Bostwick, D. G. and Mukhtar, H. (2001) Lipoxygenase-5 is overexpressed in prostate adenocarcinoma. Cancer 91, 737-743 https://doi.org/10.1002/1097-0142(20010215)91:4<737::AID-CNCR1059>3.0.CO;2-F
  53. Hennig, R., Ding, X. Z., Tong, W. G., Schneider, M. B., Standop, J., Friess, H., Buchler, M. W., Pour, P. M. and Adrian, T. E. (2002) 5-Lipoxygenase and leukotriene B(4) receptor are expressed in human pancreatic cancers but not in pancreatic ducts in normal tissue. Am. J. Pathol. 161, 421-428 https://doi.org/10.1016/S0002-9440(10)64198-3
  54. Kuhn, H. and O'Donnell, V. B. (2006) Inflammation and Immune Regulation by 12/15-Lipoxygenases. Prog. Lipid Res. 45, 334-356 https://doi.org/10.1016/j.plipres.2006.02.003
  55. Bryant, R. W., Bailey, J. M., Schewe T. and Rapoport, S. M. (1982) Positional specificity of a Rreticulocyte lipoxygenase. Conversion of arachidonic acid to 15-S-hydroperoxy- eicosatetraenoic acid. J .Biol. Chem. 257, 6050-6055
  56. Kuhn, H. and Chan, L. (1997) The role of 15-lipoxygenase in atherogenesis: pro- and antiatherogenic actions. Curr. Opin. Lipidol. 8, 111-117 https://doi.org/10.1097/00041433-199704000-00009
  57. Viita, H., Markkanen, J., Eriksson, E., Nurminen, M., Kinnunen, K., Babu, M., Heikura, T., Turpeinen, S., Laidinen, S., Takalo, T. and Yl$\ddot{a}$-Herttuala, S. (2008) 15-Lipoxygenase-1 prevents vascular endothelial growth factor A- and placental growth factor-induced angiogenic effects in rabbit skeletal muscles via reduction in growth factor MRNA levels, NO bioactivity, and downregulation of VEGF receptor 2 expression. Circ. Res. 102, 177-184 https://doi.org/10.1161/CIRCRESAHA.107.155556
  58. Wittwer, J. and Hersberger, M. (2007) The two faces of the 15-lipoxygenase in atherosclerosis. Prostaglandins Leukot. Essent. Fatty Acids 77, 67-77 https://doi.org/10.1016/j.plefa.2007.08.001
  59. Wei, C., Zhu, P., Shah, S. J. and Blair, I. A. (2009) 15-Oxoeicosatetraenoic acid, a metabolite of macrophage 15-hydroxyprostaglandin dehydrogenase that inhibits endothelial cell proliferation. Mol. Pharmacol. Jun 17. [Epub ahead of print]; DOI:10.1124/mol.109.057489
  60. Brinckmann, R., Schnurr, K., Heydeck, D., Rosenbach, T., Kolde, G. and Kühn, H. (1998) Membrane translocation of 15-lipoxygenase in hematopoietic cells is calcium-dependent and activates the oxygenase activity of the enzyme. Blood 91, 64-74
  61. Maskrey, B. H., Bermudez-Fajardo, A., Morgan, A. H., Stewart-Jones, E., Dioszeghy, V., Taylor, G. W., Baker, P. R., Coles, B., Coffey, M. J., Kühn, H. and O'Donnell, V. B. (2007) Activated platelets and monocytes generate four hydroxyphosphatidylethanolamines via lipoxygenase. J. Biol. Chem. 282, 20151-20163 https://doi.org/10.1074/jbc.M611776200
  62. Tai, H. H., Tong, M. and Ding, Y. (2007) 15-Hydroxyprostaglandin dehydrogenase (15-PGDH) and lung cancer. Prostaglandins Other Lipid Mediat. 83, 203-208 https://doi.org/10.1016/j.prostaglandins.2007.01.007
  63. Backlund, M. G., Mann, J. R., Holla, V. R., Buchanan, F. G., Tai, H. H., Musiek, E. S., Milne, G. L., Katkuri, S. and Dubois, R. N. (2005) 15-Hydroxyprostaglandin dehydrogenase is down-regulated in colorectal cancer. J. Biol. Chem. 280, 3217-3223 https://doi.org/10.1074/jbc.M411221200
  64. Grant, G. E., Rokach, J. and Powell, W. S. (2009) 5-Oxo-ETE and the OXE receptor. Prostaglandins Other Lipid Mediat. May 18. [Epub ahead of print]; DOI:10.1016/j.prostaglandins. 2009.05.002

Cited by

  1. Analysis of bioactive eicosanoids in equine plasma by stable isotope dilution reversed-phase liquid chromatography/multiple reaction monitoring mass spectrometry vol.25, pp.5, 2011, https://doi.org/10.1002/rcm.4893
  2. Quantitative metabolic profiling of lipid mediators vol.57, pp.8, 2013, https://doi.org/10.1002/mnfr.201200840
  3. Analysis of epoxyeicosatrienoic acids by chiral liquid chromatography/electron capture atmospheric pressure chemical ionization mass spectrometry using [13C]-analog internal standards vol.24, pp.22, 2010, https://doi.org/10.1002/rcm.4760
  4. Targeted lipidomic strategies for oxygenated metabolites of polyunsaturated fatty acids vol.1851, pp.4, 2015, https://doi.org/10.1016/j.bbalip.2014.11.012
  5. Lipidomics at the Interface of Structure and Function in Systems Biology vol.18, pp.3, 2011, https://doi.org/10.1016/j.chembiol.2011.01.014
  6. Targeted eicosanoids lipidomics of exhaled breath condensate in healthy subjects vol.878, pp.21, 2010, https://doi.org/10.1016/j.jchromb.2010.05.012
  7. Transgenic Biosynthesis of Polyunsaturated Fatty Acids: A Sustainable Biochemical Engineering Approach for Making Essential Fatty Acids in Plants and Animals vol.113, pp.5, 2013, https://doi.org/10.1021/cr300007p
  8. Stable-isotope dilution LC–MS for quantitative biomarker analysis vol.2, pp.2, 2010, https://doi.org/10.4155/bio.09.185
  9. Cloning and expression of three lipoxygenase genes from liverwort, Marchantia polymorpha L., in Escherichia coli vol.77, 2012, https://doi.org/10.1016/j.phytochem.2012.02.009
  10. Plasma lipid metabolites are associated with gestational age but not bronchopulmonary dysplasia vol.101, pp.8, 2012, https://doi.org/10.1111/j.1651-2227.2012.02694.x
  11. Novel liquid chromatography–mass spectrometry method shows that vitamin E deficiency depletes arachidonic and docosahexaenoic acids in zebrafish (Danio rerio) embryos vol.2, 2014, https://doi.org/10.1016/j.redox.2013.12.007
  12. Mass Spectrometry Based Lipidomics: An Overview of Technological Platforms vol.2, pp.4, 2012, https://doi.org/10.3390/metabo2010019
  13. Lipidomic profiling of model organisms and the world's major pathogens vol.95, pp.1, 2013, https://doi.org/10.1016/j.biochi.2012.08.012
  14. The Eicosanoids, Redox-Regulated Lipid Mediators in Immunometabolic Disorders vol.29, pp.3, 2018, https://doi.org/10.1089/ars.2017.7332
  15. Immune responsive resolvin D1 programs peritoneal macrophages and cardiac fibroblast phenotypes in diversified metabolic microenvironment vol.234, pp.4, 2018, https://doi.org/10.1002/jcp.27165