Creating Highly Sensitive and Selective Biochip Sensors for the Detection of Organophosphorus/carbamate Pesticides

고감도 및 고선택성의 유기인계/카바메이트계 농약 검출용 바이오칩 센서

  • Sim, Hyerim (Department of Chemistry, Kyungpook National University) ;
  • Kim, Suhee (Department of Chemistry, Kyungpook National University) ;
  • Lee, Jaeyoung (Electrochemical Reaction and Technology Laboratory, Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Lee, Hye Jin (Department of Chemistry, Kyungpook National University)
  • 심혜림 (경북대학교 자연과학대학 화학과) ;
  • 김수희 (경북대학교 자연과학대학 화학과) ;
  • 이재영 (광주과학기술원 환경공학과 Ertl 연구실) ;
  • 이혜진 (경북대학교 자연과학대학 화학과)
  • Received : 2009.11.16
  • Published : 2009.12.10

Abstract

Biochip sensing technologies offering in-situ, fast and real-time measurements in addition to portability can be powerfully utilized in a wide spectrum of research areas including environmental science, food science, medical diagnostics and drug development. In this article, we introduce current research trends and economic aspects of the development of various optical biochip technologies for the analysis of organophosphorus/carbamate pesticides in environmental samples, which is of global importance with serious consequences for both current and future generations. In particular, we will highlight recent efforts made in the creation of highly sensitive and selective optical biochip sensors in conjunction with nanobiotechnologies and microfabrication for the rapid detection of organophosphorus/carbamate pesticides.

실시간 측정 및 이동성이 자유로운 칩 형태의 바이오센싱 원천 기술개발은 잔류 농약 검출을 비롯하여 생 유기 물질 분석에 유용하게 활용되어 환경과학, 식품과학, 의학진단, 신약개발 등의 연구 및 응용분야에 큰 기여를 할 것으로 예상된다. 본 총설에서는 유기인계/카바메이트계 농약 검출의 중요성을 토대로 최근 개발된 광학 바이오칩 센서와 이를 통해 응용된 농약검출방법에 관련한 국내 외 기술개발 동향 및 발전가능성에 대해서 서술하고자 하며, 더 나아가 바이오칩 센서에 다양한 나노소재 및 마이크로 나노 공정 기술을 융합함으로써 소형화가 용이하고, 더욱 우수한 감도와 선택성을 갖는 유기인계/카바메이트계 농약 맞춤형 나노융합 바이오칩 센서 개발연구에 대해 논의하고자 한다.

Keywords

Acknowledgement

Supported by : Kyungpook National University

References

  1. H. Thiermann, L. Szincicz, F. Eyer, F. Worek, P. Eyer, N. Felgenhaur, and T. Zilker, Toxicology letters, 107, 233 (1999) https://doi.org/10.1016/S0378-4274(99)00052-1
  2. L. Claudia, M. D. Barthold, G. Joshua, and M. D. Schier, Crit Care Clin, 21, 673 (2005) https://doi.org/10.1016/j.ccc.2005.05.010
  3. S, Lacorte and D. Barcelo, J. Chromatogr., A, 725, 85 (1996) https://doi.org/10.1016/0021-9673(95)01207-9
  4. E. Hogendoorn and P. van Zoonen, J. Chromatogr., A, 892, 435 (2000) https://doi.org/10.1016/S0021-9673(00)00151-5
  5. S. D. Roast, R. S. Thompson, P. Donkin, J. Widdows, and M. B. Jones, Water Res., 33, 319 (1999) https://doi.org/10.1016/S0043-1354(98)00248-6
  6. X. Jiang, D. Li, X. Xu, Y. Ying, Y. Li, Z. Ye, and J. Wang, Biosens. Bioelectron., 23, 1577 (2008) https://doi.org/10.1016/j.bios.2008.01.035
  7. S. M. Dyer, M. Cattani, D. L. Pisaniello, F. M. Williams, and J. W. Edwards, Toxicology, 169, 177 (2001) https://doi.org/10.1016/S0300-483X(01)00509-1
  8. G. Lin, Y. R. Lee, Y. C. Liu, and Y. G. Wu, Chem. Res. Toxicol.,18, 1124 (2005) https://doi.org/10.1021/tx050014o
  9. M. Eisenstein, Nature, 444, 959 (2006)
  10. H. J. Lee, A. W. Wark, and R. M. Corn, Langmuir., 22, 5241 (2006) https://doi.org/10.1021/la060223o
  11. E. Mauriz, A. Calle, L. M. Lechuga, J. Quintana, A. Montoya, and J. J. Manclus, Anal. Chim. Acta, 561, 40 (2006) https://doi.org/10.1016/j.aca.2005.12.069
  12. E. Mauriz, A. Calle, A. Montoya, and L. M. Lechuga, Talanta.,69, 359 (2006) https://doi.org/10.1016/j.talanta.2005.09.049
  13. E. Mauriz, A. Calle, J. J. Manclus, A. Montoya, A. M. Escuela, J. R. Sendra, and L. M. Lechuga, Sens. Actuators, B., 118, 399 (2006) https://doi.org/10.1016/j.snb.2006.04.085
  14. C. E. Jordan, A. G. Frutos, A. J. Thiel, and R. M. Corn, Anal. Chem., 69, 4939 (1997) https://doi.org/10.1021/ac9709763
  15. H. J. Lee, D. Nedelkov, and R. M. Corn, Anal. Chem., 78, 6504 (2006) https://doi.org/10.1021/ac060881d
  16. H. J. Lee, A. W. Wark, and R. M. Corn, Analyst, 133, 596 (2008) https://doi.org/10.1039/b718713k
  17. M. Zourob, A. Simonian, J. Wild, S. Mohr, X. Fan, I. Abdulhalim, and N. J. Goddard, Analyst, 132, 114 (2007) https://doi.org/10.1039/b612871h
  18. T. Basova, V. Plyashkevich, A. Hassan, A. G. Gürek, G. Gümüs, and V. Ahsen, Sens. Actuators, B., 139, 557 (2009) https://doi.org/10.1016/j.snb.2009.03.062
  19. G. Yang, I. M. White, and X. Fan, Sens. Actuators, B., 133, 105 (2008) https://doi.org/10.1016/j.snb.2008.02.004
  20. L. M. Lechuga, A. T. M. Lenferink, R. P. H. Kooyman, and J. Greve, Sens. Actuators, B., 24, 762 (1995)
  21. N. G. Karousos, S. Aouabdi, A. S. Way, and S. M. Reddy, Anal. Chim. Acta, 469, 189 (2002) https://doi.org/10.1016/S0003-2670(02)00668-2
  22. H. Zhu and M. Snyder, Curr. Opin. Chem. Biol., 7, 55 (2003) https://doi.org/10.1016/S1367-5931(02)00005-4
  23. M. Uttamchandani, J. Wang, and S. Q. Yao, Mol. BioSyst., 2, 58 (2006) https://doi.org/10.1039/b513935j
  24. H. Zhang, Z. Wang, X.-F. Li, and X. C. Le, Angew. Chem., Int. Ed., 45, 1576 (2006) https://doi.org/10.1002/anie.200503345
  25. A. W. Wark, Y. Li, H. J. Lee, A. J. Qavi, and R. M. Corn, Anal. Chem., 79, 6697 (2007) https://doi.org/10.1021/ac071062b
  26. E. J. Cho, J. R. Collett, A. E. Szafranska, and A. D. Ellington, Anal. Chim. Acta., 564, 82 (2006) https://doi.org/10.1016/j.aca.2005.12.038
  27. C. Bock, M. Coleman, B. Collins, J. Davis, G. Foulds, L. Gold, C. Greef, J. Heil, J. S. Heilig, B. Hicke, M. N. Hurst, G. M. Husar, D. Miller, R. Ostroff, H. Petach, D. Schneider, B. Vant-Hull, S. Waugh, A. Weiss, S. K. Wilcox, and D. Zichi, Proteomics.,4, 609 (2004) https://doi.org/10.1002/pmic.200300631
  28. M. P. Kreuzer, R. Quidant, G. Badenes, and M. P. Marco, Biosens. Bioelectron., 21, 1345 (2006) https://doi.org/10.1016/j.bios.2005.04.019
  29. A. Virel, L. Saa, and V. Pavlov, Anal. Chem., 81, 268 (2009) https://doi.org/10.1021/ac801949x
  30. S. S. R. Dasary, U. S. Rai, H. Yu, Y. Anjaneyulu, M. Dubey, and P. C. Ray, Chem. Phys. Lett., 460, 187 (2008) https://doi.org/10.1016/j.cplett.2008.05.082
  31. S. I. Stoeva, J.-S. Lee, J. E. Smith, S. T. Rosen, and C. A. Mirkin, J. Am. Chem. Soc., 128, 8378 (2006) https://doi.org/10.1021/ja0613106
  32. C. Noguez, J. Phys. Chem. C., 111, 3806 (2007) https://doi.org/10.1021/jp066539m
  33. E. Hutter and M.-P. Pileni, J. Phys. Chem. B., 107, 6497 (2003) https://doi.org/10.1021/jp0342834
  34. T.-J. Lin, K.-T. Huang, and C.-Y. Liu, Biosens. Bioelectron., 22, 513 (2006) https://doi.org/10.1016/j.bios.2006.05.007
  35. M. P. Kreuzer, R. Quidant, G. Badenes, and M.-P. Marco, Biosens. Bioelectron., 21, 1345 (2006) https://doi.org/10.1016/j.bios.2005.04.019
  36. R. C. Bailey, J.-M. Nam, C. A. Mirkin, and J. T. Hupp, J. Am. Chem. Soc., 125, 13541 (2003) https://doi.org/10.1021/ja035479k
  37. A. W. Wark, H. J. Lee, A. J. Qavi, and R. M. Corn, Anal. Chem.,79, 6697 (2007) https://doi.org/10.1021/ac071062b
  38. H. J. Lee, A. W. Wark, and R. M. Corn, Analyst, 133, 975 (2008) https://doi.org/10.1039/b717527b
  39. A. Gole and C. J. Murphy, Chem. Mater., 17, 1325 (2005) https://doi.org/10.1021/cm048297d
  40. P. K. Jain and M. A. El-Sayed, Nano Lett., 8, 4347 (2008) https://doi.org/10.1021/nl8021835
  41. H. J. Lee, A. W. Wark, and R. M. Corn, J. Phys.: Condens. Matter, 19, 375107 (2007) https://doi.org/10.1088/0953-8984/19/37/375107
  42. C. Wang and J. Irudayaraj, Small, 4, 2204 (2008) https://doi.org/10.1002/smll.200800309
  43. S. Su, Y. He, M. Zhang, K. Yang, S. Song, X. Zhang, C. Fan, and S.-T. Lee, Appl. Phys. Lett., 93, 023113 (2008) https://doi.org/10.1063/1.2959827
  44. A. Ishii, S. Takeda, S. Hattori, K. Sueoka, and K. Mukasa, Physicochem. Eng. Aspects., 313, 456 (2008) https://doi.org/10.1016/j.colsurfa.2007.05.071
  45. V. Vamvakaki and N. A. Chaniotakis, Biosens. Bioelectron., 22, 2848 (2007) https://doi.org/10.1016/j.bios.2006.11.024
  46. J. L. Adgate, A. Bartekova, P. C. Raynor, J. G. Griggs, A. D. Ryan, B. R. Acharya, C. J. Volkmann, D. D. Most, S. Lai, and M. D. Bonds, J. Environ. Monit., 11, 49 (2009) https://doi.org/10.1039/b806954a
  47. Rajan, S. Chand, and B. D. Gupta, Sens. Actuators, B., 123, 661 (2007) https://doi.org/10.1016/j.snb.2006.10.001
  48. X. Du, Z. Ying, Y. Jiang, Z. Liu, T. Yang, and G. Xie, Sens. Actuators, B., 134, 409 (2008) https://doi.org/10.1016/j.snb.2008.05.016
  49. H. R. Luckarift, S. Balasubramanian, S. Paliwal, G. R. Johnson, and A. L. Simonian, Colloids Surf., B., 58, 28 (2007) https://doi.org/10.1016/j.colsurfb.2006.08.013
  50. J. Wang, M. P. Chatrathi, A. Mulchandani, and W. Chen, Anal. Chem., 73, 1804 (2001) https://doi.org/10.1021/ac001424e
  51. X. Llopis, M. Pumera, S. Alegret, and A. Merkoci, Lab Chip, 9, 213 (2009) https://doi.org/10.1039/b816643a
  52. E. Mallat, C. Barzen, R. Abuknesha, G. Gaugliz, and D. Barcelo, Anal. Chim. Acta., 426, 209 (2001) https://doi.org/10.1016/S0003-2670(00)00841-2
  53. P. Pulido-Tofi$\tilde{n}$o, J. M. Barrero-Moreno, and M. C. P$\acute{e}$rez-Conde, Anal. Chim. Acta., 562, 122 (2006) https://doi.org/10.1016/j.aca.2005.12.072
  54. C. Mastischiadis, S. E. Kakabakos, I. Christofidis, M. A. Koupparis, C. Willetts, and K. Misiakos, Anal. Chem., 74, 6064 (2002) https://doi.org/10.1021/ac020330x
  55. M. F. Yulaev, R. A. Sitdikov, N. M. Dmitrieva, E. V. Yazynina, A. V. Zherdev, B. B. Dzantiev, Sens. Actuators, B., 75, 129 (2001) https://doi.org/10.1016/S0925-4005(01)00551-2
  56. T. Lim., M. Oyama, K. Ikebukuro, and I. Karube, Anal. Chem., 72, 2856 (2000) https://doi.org/10.1021/ac9914465
  57. N. Soh, T. Watanabe, Y. Asana, and T. Imato, Sens. Mater., 15, 423 (2003)
  58. E. Mauriz, A. Calle, A. Abad, A. Montoya, A. Hildebrandt, D. Barcelo, and L. M. Lechuga., Biosens. Bioelectron., 21, 2129 (2006) https://doi.org/10.1016/j.bios.2005.10.013
  59. A. L. Simonian, T. A. Good, S.-S. Wang, and J. R. Wild, Anal. Chim. Acta, 534, 69 (2005) https://doi.org/10.1016/j.aca.2004.06.056
  60. J. Qiu, J. Chen, Q. Ma, and Y. Miao, Chemosphere, 77, 129 (2009) https://doi.org/10.1016/j.chemosphere.2009.05.004