저불산 불소계 화합물 수용액을 이용한 글라스 박판화

Glass Thinning by Fluoride Based Compounds Solution with Low Hydrofluoric acid Concentration

  • 김호태 (호서대학교 화학공학과) ;
  • 강동구 (호서대학교 화학공학과) ;
  • 김진배 (호서대학교 화학공학과)
  • Kim, Ho-Tae (Department of Chemical Engineering, Hoseo University) ;
  • Gang, Dong-goo (Department of Chemical Engineering, Hoseo University) ;
  • Kim, Jin-Bae (Department of Chemical Engineering, Hoseo University)
  • 투고 : 2009.08.12
  • 심사 : 2009.08.22
  • 발행 : 2009.10.10

초록

본 연구에서는 글라스를 $100{\mu}m$ 이하의 두께로 박판화하기 위한 새로운 습식 에칭방법 및 에칭 용액을 검토하였다. $NH_4F$ 또는 $NH_4HF_2$를 주성분으로 황산 또는 질산을 첨가한 경우 에칭 용액의 불산 함유량을 저감하는 데에 효과가 있었다. 혼산 용액의 조성과 온도의 영향을 검토하였으며, 음이온계 계면활성제의 첨가는 에칭반응에 의해 생성되는 슬러지의 부착을 억제해주는 효과가 있었다. 수류 발생부를 가지는 새로운 파일럿 장비를 사용하여 상용 무알칼리 글라스와 소다라임 글라스의 에칭 실험을 실시하였다. $640{\mu}m$ 두께의 무알칼리 글라스를 $45{\mu}m$ 두께로 $500{\mu}m$ 두께의 소다라임 글라스를 $100{\mu}m$ 두께로 박판화하였으며, 에칭 후의 표면 조도는 $0.01{\sim}0.02{\mu}m$를 유지하였다.

In this study, a new wet etching method and the solution for thinning the glass with the thickness below $100{\mu}m$ were investigated. For the preparation of etching solution with low hydrofluoric acid, it was effective to use $NH_4F$ or $NH_4HF_2$ as a main ingredient with the addition of sulfuric acid or nitric acid. Influence of the composition of mixed acid solution and the temperature on the etching rate was investigated. The addition of anionic surfactant provides the function to prevent the adhesion of sludge generated by the etching reaction. A new wet etching pilot device equipped with streaming generation parts was used to test etching of commercial non-alkali glass and soda lime glass. The non-alkali glass with the thickness of 640 ${\mu}m$ and soda lime glass with the thickness of $500{\mu}m$ were etched to $45{\mu}m$ and $100{\mu}m$, respectively, by using the pilot device. After the etching by pilot device, the roughness degree of the glass surface was maintained at $0.01{\sim}0.02{\mu}m$.

키워드

참고문헌

  1. T.-Y. Park, T.-Y. Choung, and H.-G. Min, World Development, 36, 2855 (2008) https://doi.org/10.1016/j.worlddev.2007.11.005
  2. N. S. Ong and V. C Venkatesh, J. Mater. Proc. Tech., 83, 261 (1998) https://doi.org/10.1016/S0924-0136(98)00070-3
  3. W. Xiaosheng, C. Wenyuan, W Lijiang, L. Xiangyang, Z. Weiping, and C. Xiaomei, Inter. J. Machine Tools & Manufacture, 42, 449 (2002) https://doi.org/10.1016/S0890-6955(01)00140-7
  4. X. Sun, D. J. Stephenson, O. Ohnishi, and A. Baldwin, Precision Eng., 30, 145 (2006) https://doi.org/10.1016/j.precisioneng.2005.07.001
  5. G. Salvio, R. Meneghello, and G. Concheri, J. Machine Tools & Manufacture, 49, 1 (2009) https://doi.org/10.1016/j.ijmachtools.2008.09.001
  6. G. Spierings, J. Mater. Sci., 28, 6261 (1993) https://doi.org/10.1007/BF01352182
  7. Y. Zhou, P. Funkenbusch, D. Quesnel, D. Golini, and A. Lindguist, J. Amer. Ceram. Soc., 77, 3277 (1994) https://doi.org/10.1111/j.1151-2916.1994.tb04585.x
  8. C. Iliescu, J. Jing, F. E. H. Tay, J. Miao, and T. Sun, Surface & Coatings Tech., 198, 314 (2005) https://doi.org/10.1016/j.surfcoat.2004.10.094
  9. C. Iliescu, B. Chen, and J. Miao, Sensors and Actuators A, 143, 154 (2008) https://doi.org/10.1016/j.sna.2007.11.022
  10. M. Kolli, M. Hamidouche, N. Bouaouadja, and G. Fantozzi, J. of the Eu. Ceramic Soc., 29, 2697 (2009) https://doi.org/10.1016/j.jeurceramsoc.2009.03.020
  11. L. Wong, T. Suratwala, M. D. Feit, and R. Steele, J. of Non- Crystalline Solids, 355, 797 (2009) https://doi.org/10.1016/j.jnoncrysol.2009.01.037
  12. Korea Patent 1998-030459 (1998)
  13. Korea Patent 2000-0024808 (2000)
  14. Korea Patent 10-2008-0039367 (2008)
  15. Korea Patent 10-2009-0061399 (2009)
  16. Korea Patent 10-2007-0019550 (2007)
  17. Korea Patent 10-2009-0018996 (2009)